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Abstract

How can the concepts and results of communication theory aid evolutionary biology? This

thesis argues for an explanatory framework, evolutionary communication theory, that inter-

prets and illuminates scientific research into the phenomenon of biological signalling. By

expanding the theory beyond the models and goals familiar to Claude Shannon and other

engineers, real insight is gained into how strategic interplay between senders and receivers

shapes signal form. Furthermore, interpreting artificial and natural signals in terms of sender-

receiver teleosemantics demonstrates the explanatory role of relations borne between signals

and world affairs. One of the major results of the thesis is a rejection of the orthodox dis-

tinction between Shannon and semantic information. While there are at least two useful

distinctions to be drawn – between cues and signals, and between statistical and functional

content – the terminological confusion that gave rise to the phrase ‘Shannon information’

should be put aside for good.

Chapter 1 outlines a way to capture the relationships between signals and other signal-

like interactions using a multi-dimensional conceptual space called a hypercube. I argue that

sender-receiver teleosemantics is uniquely well suited to capturing those aspects of commu-

nication theory that render it a viable mathematical framework for evolutionary biology.

Chapter 2 discusses an early attempt to apply communication theory in evolutionary bi-

ology. Haldane & Spurway’s informational interpretation of the honeybee waggle dance has

recently been criticised on mathematical grounds. These criticisms lend support to scepti-

cism about the relevance of information for evolutionary biology. I argue that the criticisms

are themselves mathematically erroneous, so one route to scepticism about information is
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vii

undercut. Chapter 3 explores a related line of scepticism. It is common in the philosophy of

biology to treat the concepts and tools of communication theory as insufficient or irrelevant

for analysing semantic content. I argue that the grounds of this supposition are based on

misinterpretations of some features of communication theory.

In chapter 4 I reconstruct Millikan’s teleosemantics in a causal-modelling setting, high-

lighting the explanatory role of semantic content. In chapter 5 I respond to objections to

the teleosemantic account, including the claim that the theory renders explanations of suc-

cess that appeal to semantic content circular. I also argue for an interpretation of important

features of communication-theoretic models in terms of teleosemantics.

Chapter 6 explores another challenge to applying teleosemantics to biological signals.

The theory places emphasis on cooperation between senders and receivers, but biological

signals are often fraught with evolutionary conflict. I discuss recent formal work, and argue

that prospects for teleosemantics are good. Finally, in chapter 7 I argue that an explanatory

framework that draws on communication-theoretic concepts would be beneficial to evolu-

tionary biology. I present case studies of communicative behaviour for which biologists offer

explanations that are well interpreted through the principles of communications engineering.
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Introduction

What do we mean when we say that A communicates with B? We mean that the
physical acts of A have induced a desired physical state in B.

Cover and Thomas (2006, p. 183)

A bird sits on a telegraph wire and sings. What is the difference between its song and the

electrical pulse within the wire? One is an acoustic wave produced by the bird’s vocal organ,

the other is an electric current produced by a transmitting station. One moves at the speed of

sound and is relatively short-ranged, the other moves at the speed of light and can be relayed

indefinitely. The form of the song is determined by various genetic, developmental, perhaps

social, and probably accidental factors of the bird, while the form of the transmission is de-

termined by a coding scheme invented as a result of decades of mathematical analysis – plus

a dose of noise. That mathematical work originated in the early 20th century and matured

immediately after the Second World War, with the publication of “A Mathematical Theory

of Communication” by Claude Shannon (1948a). The definitions and theorems appearing in

that text played a fundamental role in the technological advances of the late 20th century.

Telegraph lines existed before 1948, of course. But Shannon and his colleagues at

Bell Labs developed a foundational approach to the engineering problem of communica-

tion. Even before its practical applications impacted public life, biologists became interested

in using communication theory to analyse biological signals. The 1950s saw a flurry of sym-

posia and publications aimed toward novel mathematical analyses of biological structures

and systems (Attneave, 1954; Haldane and Spurway, 1954; MacKay and McCulloch, 1952;

Quastler, 1953; Yockey, 1958). It seemed to many that Shannon was offering to quantify

what had previously been only informally described. This excited a lot of people.

1



Introduction 2

Sadly, no consensus emerged about how to apply communication theory in biology. Once

the initial wave of excitement died, hope gave way to scepticism. Some biologists continued

to quantify signalling behaviour using Shannon’s tools. For the most part, however, the lure

of precision wore off. It was simply not clear what would be achieved by translating data

extracted from biological observations into the language of communication theory.

Contemporary philosophy of biology is still concerned with these issues. But its treat-

ment of communication theory is inadequate. Sceptical arguments ignore its range of applica-

tion. Its relationship to philosophical and biological accounts of communication is neglected.

In this project I begin to redress these shortcomings.

The thesis is structured as follows.

Chapter 1 introduces the central model and sender-receiver teleosemantics. Both deal

with signals, but evolutionary biology recognises several kinds of signal-like interactions.

The chapter outlines a way to capture the relationships between them using a multi-dimensional

conceptual space called a hypercube. I characterise signals, placing artificial and natural com-

munication in a common form, and distinguish them from two signal-like interactions: cues

and influence. I argue that sender-receiver teleosemantics is uniquely well suited to captur-

ing those aspects of communication theory that render it a viable mathematical framework

for evolutionary biology. I also introduce the properties and relations attributed to signals by

sender-receiver teleosemantics. These will be crucial to later arguments.

In chapter 2, I explore an early attempt to model biological signalling in terms of com-

munication theory. Haldane and Spurway (1954) use statistical data to measure the rate of

information transmission in the honeybee waggle dance. Recently, philosophers have ques-

tioned their modelling choices and thus the relevance of their results. These criticisms lend



3 Introduction

support to scepticism about the relevance of information for evolutionary biology. I argue

that the criticisms are themselves mathematically erroneous, so one route to scepticism about

information is undercut.

Chapter 3 aims to correct some core misconceptions about the application of communi-

cation theory in biology. It is common in the philosophy of biology to treat the concepts and

tools of communication theory as insufficient for analysing semantic content. The strongest

form of this claim states that communication theory is irrelevant to philosophical theories

of content. Usually, such claims are supported in two ways: by citing Claude Shannon’s

warning that information ought to be distinguished from meaning, and by pointing out that

statistical correlation is a broader category than semantic content. I argue that Shannon’s

warning ought to be understood in a way that does not prevent communication theory play-

ing a role in a philosophical theory of semantic content. I further argue that communication

theory has more concepts and tools at its disposal than just measures of statistical correlation.

Chapters 4 and 5 present the details of the teleosemantic theory of content. In chap-

ter 4 I argue that relations can play an explanatory role in causal models, drawing on the

interventionist explanatory framework. I then reconstruct Millikan’s teleosemantics in a

causal-modelling setting, highlighting the explanatory role of ‘mapping relations’. Mapping

relations are the relations that hold between signals and world affairs that teleosemantics

identifies as the fundamental form of semantic content. In chapter 5 I respond to some objec-

tions to the teleosemantic account, including the claim that the theory renders explanations

of success that appeal to semantic content circular. I also argue for an interpretation of some

features of communication-theoretic models in terms of teleosemantics.

Chapter 6 considers extending teleosemantics to cover cases of signalling under divergent
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interests. The theory places emphasis on cooperation between senders and receivers, but

biological signals are often fraught with evolutionary conflict. I discuss recent formal work,

especially results drawing on an aspect of communication theory called rate-distortion theory.

I argue that prospects are good for extending teleosemantics.

Chapter 7 draws together many of the themes of the project in arguing for a novel la-

bel for a family of existing explanatory practices: evolutionary communication theory.

The theory provides an explanatory framework for biological signals using communication-

theoretic principles. The foregoing chapters cleared away the strongest forms of scepticism

about the concept of information and its relevance of biology. The final chapter presents a

positive story about the benefits of applying that concept, and other mathematical methods

and tools, in evolutionary studies of signalling behaviour. Mainstream biology welcomes

these principles, and it is time for philosophy to accept them too.

The remainder of this introduction covers important terminology.

Terminology and clarifications

Symbols. The following symbols denote features of signalling models: states W = {wi}l
i=1,

signals S = {s j}m
j=1, and acts A = {ak}n

k=1. Matrices represent payoffs: Q = qik, where qik

is the payoff for act ak in state wi. When sender and receiver have different payoffs, this is

denoted by a subscript (Qs, Qr) or superscript (qs
ik, qr

ik). See also appendix B.

Discrete variables. All models in this thesis use discrete rather than continuous variables,

with the following exceptions:

• The waggle dance model due to Haldane and Spurway (1954) (section 2.2)

• The costly signalling model due to Grafen (1990) (appendix D).
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Informational equations and definitions, such as entropy, surprisal and statistical content, are

presented in their discrete forms.

Case studies. Case studies appear alongside the main text in grey boxes. Although boxes

often contain non-essential content, I use them as a way to separate scientific from philosoph-

ical material. All boxes contain content that can be considered essential to the discussion in

the main text. The aim is to present the science free from philosophical bias, before dis-

cussing it in the main text with respect to my philosophical claims.

A case study

Information in these boxes should read as presenting scientific material free from

philosophical perspective.

Published material. Certain previously published material appears in the text. This is taken

from Mann (2018) and is indicated in each case.

Figures. All figures were created by the author using Paint Dot Net image editing software,

Anaconda 3 with Matplotlib, or TikZ for LATEX, with the following exceptions:

• Figure 1.5 on page 35 is a combination of figures taken from Churchland (1996, p. 24),

Mitchell (2000, p. 263), Godfrey-Smith (2009, p. 64) and Dennett (2017, §7).

• Figure 2.1 on page 66 is taken from Chittka (2004, p. 898) and distributed under the

terms of the Creative Commons Attribution License.

• Figure 4.4 on page 141 is taken from think-maths.co.uk, a collection of teaching re-

sources designed for free distribution.

• Figure 5.6 on page 213 is taken from MacKay (2003, p. 9), freely available online.

Communication theory and information theory. Communication theory is the collection

http://think-maths.co.uk
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of mathematical results and engineering methods that centre specifically around the funda-

mental problem of communication: reproducing a symbol string through a noisy channel

(see appendix A). Information theory is a much wider class of mathematical concepts and

results, applicable outside engineering to topics that have nothing to do with communica-

tion. Because my focus in this thesis is on biological signals, I often refer to communication

theory rather than information theory; the terms are not synonymous.

Evolutionary biology. The term evolutionary biology, as appears in the title of the thesis and

throughout, encompasses evolutionary approaches to explaining biological phenomena. This

particularly includes accounts in behavioural ecology that seek to explain animal signalling

by reference to evolutionary processes, as indicated by the title of the series Behavioural

Ecology: An Evolutionary Approach (Krebs and Davies, 1978, 1984).



Chapter 1

Signalling in the abstract

1.1 Introduction

Signals have a fundamentally coordinative function. They mediate joint behaviour of two

or more entities. As a result, they bear relations to world affairs relevant for the success of

that behaviour. In biology, explanations of signalling behaviour refer to these relations. This

chapter explores the idea that such explanations are special, and that what is special about

them has something to do with the relations signals bear to the world. I argue that these

ideas are best understood through the lens of sender-receiver teleosemantics, a theory of

meaning.

My aim is to show that signalling is special relative to other functional behaviours. But

biological signalling, which forms the majority of our case studies, is evolutionarily con-

tinuous with other behaviours. Signals lie on a many-dimensional continuum, and not all

regions of the resultant space share their special explanatory status. For example, signals

often evolve from other kinds of dyadic interaction, such as cues and influence. These three

interactions differ along the common interest dimension of the continuum, just one of many

dimensions that comprise the relevant space. If cues and influence are not apt for the same

explanatory approach, where does the difference lie?

The space that characterises signals and related interactions is an example of a hyper-

cube. Hypercubes are multi-dimensional continua used to elucidate relations between simi-

7



Chapter 1. Signalling in the abstract 8

lar phenomena. The signalling hypercube is covered by a patchwork of distinct scientific

paradigms, some of which overlap. Paradigms are scientific practices characterised by

shared properties of the phenomena they study. Different scientists study different regions of

the many-dimensional continuum that signals inhabit. For example, microbiologists studying

quorum-sensing behaviour of bacteria are situated in a region of the hypercube characterised

by typically (though not exclusively) high common interest, relatively high resource sepa-

ration (see below), and somewhat arbitrary signal form. Behavioural ecologists studying

animal mating behaviour are much further toward the ‘conflict’ end of the common interest

dimension. The signals they consider may be more or less arbitrary than bacterial signals

depending how we interpret that term (see section 1.5).

One consequence of this chapter will be that explanations of biological signalling be-

haviour track the same features of signals required by communications engineering. Engi-

neers do not typically provide explanations, but they do offer justifications for design choices

which, in a biological context, can inform scientific explanation. In other words, biology

and engineering share an explanatory paradigm. My aim is to make plausible the idea that

communication theory can do certain kinds of explanatory work when applied to biological

signals. To argue for the claim, I will introduce several kinds of interaction and place each

in its appropriate spot on the hypercube. By showing that communication theory shares a

conceptual space with several different biological signalling paradigms, I will argue for the

prima facie utility of communication-theoretic concepts in biology.

This is how the chapter will proceed. First we require a working definition of signal. I

introduce one (section 1.2) before distinguishing signals from cues (1.3) and influence (1.4).

Then, I present a series of conceptual spaces to highlight the evolutionary continuity between
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these categories, as well as other kinds of interaction such as mechanisms (section 1.5). I

argue that the paradigm of communication theory belongs in the same conceptual region as

biological signalling. I then argue that sender-receiver teleosemantics is uniquely well-suited

to demonstrating the links between historically different paradigms (section 1.6). Together,

these considerations support the legitimacy of applying communication theory to describe

and explain biological signals.

1.2 Signals

Signalling is a form of coordinated behaviour. An appropriate characterisation of signal

must therefore rest on an appropriate characterisation of coordinated behaviour. The kind of

behaviour we are interested in is not simply dispositional, not just causal effects an organism

would have under various circumstances. Rather, it is functional behaviour, causal effects

the organism was selected to have. Signals mediate functional behaviour, and are designed

to do so.

For the sake of fixing our target, we may start with a minimal definition:

A signal is an intermediary between two entities such that it is the proper func-
tion of one (the sender) to guide the proper function of the other (the receiver).

All cooperative biological communication counts as signalling under this definition.1 Exam-

ples include the honey bee waggle dance, aposematic colouration from genuinely toxic prey

to would-be predators, and scent trails left by eusocial insects. Furthermore, the definition

picks out artificial signals too. Communication equipment designed by humans includes

1Maynard Smith and Harper (2003) and Scott-Phillips (2008) defend similar definitions in the context of
animal communication.
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transmitters and receivers. In being designed, these devices possess proper functions; in

being designed to coordinate with each other, they satisfy our definition of signalling.

What is a proper function? It is a causal effect that an object or process was selected to

have. Here selection encompasses any kind of selection process, including evolution by natu-

ral selection, learning through trial-and-error, and explicit design by rational agents. Because

anything with a proper function falls into the relevant explanatory paradigm, signals are an

ubiquitous and important feature of the design stance (Dennett, 1987). Treating objects in

the world as possessing goals – treating them as agents as I will use the term – involves

(among other things) evaluating their actions in terms of success and failure (Okasha, 2018,

Introduction). Agents have goals and can fail to achieve them. For biological agents, the

goal usually cited is optimisation of inclusive fitness (Lehmann and Rousset, 2014). Beyond

biology, we can capture an agent’s goals by citing its proper functions, what it was selected

to do (Millikan, 1984, §1).

I explore these concepts in more depth in a moment, but first must deal with a more

pressing issue. The minimal definition does not distinguish signals from what are intuitively

‘mere mechanisms’. For example, the camshaft in a car satisfies our definition, but we do

not want to call it a signal. Biologists too have mentioned the difference between, on the one

hand, emitting a call to bring your offspring back to the nest, and on the other, physically

carrying them back (Dawkins and Krebs, 1978, pp. 282–3). Counterexamples like this moti-

vate augmenting our minimal definition. However, I do not want to make that move just yet.

When I introduce the multidimensional space in section 1.5, it will have a prominent role for

the resource separation between signals and the behaviours they guide. Paradigmatic signals

are those for which all or most of the energy required to perform the act is provided by the
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receiver itself, or at least at the receiver’s end of the signalling channel. This goes some way

towards capturing the intuition.2

In a biological context, the ‘intermediaries’ mentioned in the minimal definition take

three main forms, which I will now introduce.

1.2.1 Three kinds of signal vehicle

Within our definition, there are three kinds of signal: behaviours, morphology and emissions.

First, behaviours can count as signals. For example, the waggle dance of the honey

bee serves a joint function of sender and receiver by recruiting receivers to valuable food

sources. Because of shared genetic interests, both parties gain when the receiver collects

food efficiently. Compare behaviours that are not signals. Foraging behaviour is designed to

help individuals find food. Foraging behaviour just as such is not a signal. Its function is not

to support another organism’s behaviour. Foraging behaviour might be observed by others,

and they may change their own behaviour to improve foraging efficiency. Nevertheless, if

the original foraging behaviour was not selected for this effect, it does not count as a signal.

Second, morphological features can be signals. Aposematic colouration in toxic frogs

serves the function of warding off predators. Both frog and predator gain: the frog avoids

being eaten and the predator avoids potentially deadly intoxication. Aposematic colours that

are selected for this joint function are signals. Compare morphological features that are not
2Although I do not discuss intentionally produced signals, it is worth mentioning the importance placed

on the so-called “causal inefficacy” of ostensive-inferential communication (Moore, 2017, p. 4). Moore inter-
prets Sperber and Wilson (1986) as giving a Gricean account of communication, on which ostension – alerting
receivers to the sender’s communicative intention – is the mechanism by which signals prompt receiver ac-
tion despite having negligible causal power. Similarly, Gupta and Sinha (2019, p. 2) characterise great ape
gestures as “mechanically ineffective”, highlighting the necessarily voluntary nature of the response and sug-
gests socially regulated (i.e. broadly cooperative) interaction. Analogously, my claim here is that paradigmatic
biological signals are relatively low-energy when (and because) sender and receiver are coadapted.
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signals. The length of an animal’s leg may serve a function related to its wider skeletal

structure and typical motion. It is not thereby a signal, because it is not designed to engender

some beneficial effect in another organism. Observable morphology may fortuitously benefit

other organisms. A predator might assess which prey are more likely to be harder to chase

by comparing the length of their legs. Nonetheless, if leg length was not selected to aid this

assessment it is not a signal. Longer legs may have the function of helping the animal run

faster, and predators may be the selection pressure underpinning this design. But a feature

selected for effect X is not necessarily a feature selected to inform another organism that X .

Finally, physical emissions can count as signals. For example, chemical trails laid by

foraging ants lead nestmates to food. Emissions differ from behaviour and morphology

in that they can be physically discontiguous from their sender. They contrast with non-

signalling emissions in predictable ways. Waste products, whether solid, liquid or gaseous,

are produced by all organisms. Such emissions are not signals because they do not have a

function to cause a beneficial impact to some receiver. As before, waste products may be

opportunistically used by other organisms to their benefit. But unless their production is in

part selected for this downstream benefit, waste products are not signals.

The three types of signal can be mapped onto two causal models (figure 1.1). Behavioural

and morphological signals are represented by a model with two nodes corresponding to

sender and receiver. There is no distinct causal variable representing the signal itself. Be-

haviour is a property of a sender, and morphology a configuration of it, rather than either of

them being causally downstream. In contrast, emitted signals are physically distinct from

senders and so can be represented as a third node.

Despite this difference, we will for simplicity use the common three-node format in de-
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Figure 1.1: Signals represented as causal models. A Two-node model. B Three-node model.

Figure 1.2: The causal model at the heart of the sender-receiver framework (see also ap-
pendix B).

scribing signals. The three-node model is a component of the sender-receiver framework,

a family of models designed to aid theorising about signalling behaviour in nature. To our

three nodes it adds a state, observed by the sender, and an act, performed by the receiver

(figure 1.2). Senders and receivers gain a benefit or suffer a penalty when certain acts are

performed concurrent with certain states obtaining. Intuitively, if benefits and penalties for

sender and receiver coincide, both agents should be incentivised to coordinate their behaviour

with the use of the causal intermediary: the signal.3 The sender-receiver framework allows

us to capture many important examples of signalling in nature. It highlights the relation-

ship between these cases and the central model of communication theory, introduced in the

following case study.

3Although the sender-receiver framework is usually associated with game theoretic models, it draws on
situations that can be represented as causal models. For our purposes there is no difference between signalling
games, sender-receiver games and sender-receiver models.
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Figure 1.3: The central model of communication theory. See also appendix A.

The central model of communication theory

During the Second World War, an engineer named Claude Shannon devised an abstract

mathematical framework for representing communication. Shannon (1948b) concep-

tualised the fundamental goal of communication as reconstruction of a symbol string.

He presented a formal model of that goal and a way to measure success, setting the

stage for an explosion of digital technology in the second half of the twentieth century.

Throughout this thesis, the term ‘central model’ will refer to this model (figure 1.3).

Shannon’s model contains six nodes (figure 1.3). At the source, one from a set of

possible symbol strings is selected. The encoder translates the selected string into a

codestring and transmits it across the channel, at which point it is subject to transfor-

mation due to noise. The decoder receives the (possibly noise-affected) codestring

and must attempt to reproduce the originally selected string at the target.

It is assumed the decoder has access to the statistics with which the string is generated,

so that even without the signal it could make an educated guess. But the signal pro-

vides a causal link with the actual string, improving the receiver’s chance of success.

Not just any connection will do: receivers need to know how to condition their choice

on the signal. They do this by sharing a code with the sender.
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Codes are rules for converting source strings into signals and back again. Signals in

the central model are called codewords. Symbols in the source lexicon are translated

into the code lexicon, which usually consists of 1s and 0s. These are then interpreted

by the receiver into the original symbols.

In realistic channels, noise may interfere with the signal. Some of the symbols of the

codeword are flipped. Anticipating this, the code should enable robustness, allowing

the receiver to make the best possible decision given a noisy signal containing erro-

neous symbols. Appendix A describes concepts and results that this model enables.

The central model can be thought of as a special case of an extension to the sender-receiver

framework. It is an extension because it adds a node representing noise. It is a special case

because sender and receiver share a goal – they have perfectly aligned interests – and this

goal is in particular reconstructing a symbol string. The string is generated randomly at the

state node, and the receiver must reconstruct it.

1.2.2 Proper function

This thesis concerns two kinds of signals – biological and artifical – and the analogies

between them. The key feature they share is being designed, in different though well-

understood senses. Biological signals are a consequence of natural selection, learning, and

sometimes (though rarely) other kinds of selection process such as cultural evolution. Artifi-

cial signals are designed by conscious, rational human engineers.4

4One might reasonably wonder which design process(es) give rise to human natural language: biological,
ontogenetic, cultural, rational, some combination of the four, or others not listed? I do not pursue this question
here. I suspect that – in part due to similarities in the selection processes underlying them – biological and
artificial signals are more like each other than either is like language.
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The design processes that produce signals, though importantly different in many ways,

are all selection processes. Fundamentally, selection processes generate proper functions.

Signals are a special case of proper function, a case in which behaviours of two entities

correspond as a result of selection acting jointly on them.

Proper function is a term of art. It marks a large class of items in the natural world, and

many in familiar human contexts. What is important for our purposes is that the same kind of

pattern, of joint proper function, can be found in all our examples of signalling. Joint proper

function – or just joint function for short – grounds the unique explanatory role of signals.

Joint functions are functions belonging to interactions between two devices. Mutually ben-

eficial interactions contribute to reproduction of types that take part in the interaction. This

in turn contributes to the recurrence of that type of interaction. Signals explain their own

existence by taking a form that mediates beneficial behaviour of sender and receiver.

To be sure, at its broadest, this explanatory pattern is common to any functional behaviour.

The form of a functional behaviour explains persistence of the entity with that function – that

is just what the concept of proper function captures. Joint functions concern two entities with

coordinated behaviour, where the form of each explains persistence of the interaction.

In the remainder of this section we will focus on situations of perfect common inter-

est, where joint functions are not threatened by individual incentives to exploit. Perhaps

such scenarios rarely or never exist in nature; nonetheless, understanding the hypothetical

cooperative case is crucial to understanding real phenomena. Divergent interests, which are

admittedly crucial in many explanations of signalling behaviour, are considered in chapters

6 and 7.

Signals, then, are special because they mediate joint functions. This means that their
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paradigmatic form is informational rather than mechanical. This in turn warrants attribution

of a philosophically vexed feature: mapping relations between signals and world affairs.

1.2.3 Mapping relations

Because signals cannot physically force receivers to perform an action, there must be a rea-

son why receivers choose the actions they do in response to signals. Teleosemantics says

that this reason can be found by positing a relation between the signal and the circumstances

in which the receiver acts. Call these relevant circumstances the signified. In engineering

and science, the relationship between signal and signified is typically described by saying

one carries information about the other. One of the contentions of this thesis is that this

locution is best understood through teleosemantics. In particular, it should be understood

in terms of sender-receiver teleosemantics as introduced by Ruth Millikan (1984) and fur-

ther defended by Millikan (1989, 2004b, 2017), Artiga (2014b, 2016a), Martínez (2019) and

others. Hereafter the term teleosemantics shall refer to this theory unless otherwise specified.

According to teleosemantics, receivers are able to perform their proper functions in the

right way only when signals bear a particular relation to signifieds. Here the ‘right way’ to

perform a function is, roughly, in the same way that a majority of the receiver’s ancestors

performed it when they contributed to success of their lineage through selection. When his-

torically selected receivers were selected in part by responding to signals that bore relations

to success-relevant world states – and those relations help explain how those receivers got

selected – those relations are called mapping relations. A signal observed by a present

receiver must bear that same relation, if it is to cause success in the right way. This being-

supposed-to-bear-a-relation is what teleosemantics identifies as semantic content. A signal’s
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Figure 1.4: The basic teleosemantic model. Dashed lines represent mapping relations.
The signal bears a descriptive relation to its truth condition and a directive relation to its
satisfaction condition. Adapted from Millikan (2004b, fig. 6.3 p. 78).

mapping rule picks out the world state that must obtain in order for the signal to bear the

relevant mapping relation to it. This brief exposition is expanded in great detail, along with

an account of how relations in general can be explanatory, in chapter 4 and 5.

There are two kinds of fundamental mapping relation, directive and descriptive (figure

1.4). Directive mapping relations hold between a signal and what it is supposed to cause

the receiver to bring about – its satisfaction condition. Descriptive mapping relations hold

between a signal and what must be the case in order for the receiver’s behaviour, conditioned

on the signal, to be successful – its truth condition. For example, the directive aspect of the

honeybee waggle dance maps onto the intended future behaviour of receiver bees in flying

toward the indicated food source. The descriptive aspect is the location at which food would

have to be present in order for receiver bees’ subsequent behaviour to be successful.

Paradigmatic explanations of biological signalling behaviour track mapping rules. For

example, a very simple mapping rule is the threshold effect of quorum sensing in communal

bacteria like Pseudomonas aeruginosa. When colonising a new area like soil or a mam-

malian lung, P. aeruginosa coordinates behaviour to achieve more effective virulence. It

benefits all individuals to act in accordance with the majority. Although quorum sensing is

of most interest to philosophers as a collective action problem, it also provides an example
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of a simple mapping rule. Sufficient density of the signalling molecule in the environment

indicates that the requisite number of individuals are present. Equally, it directs individuals

to begin whatever behaviour is being coordinated. The system may be portrayed as follows:

Concentration above threshold →descriptive requisite number of individuals present

Concentration above threshold →directive begin coordinated behaviour

Perhaps even simpler are the mapping rules of undifferentiated alarm calls:

Call here, now →descriptive danger here, now

Call here, now →directive take evasive action now

Mapping rules are also required for communications engineering to be possible. Communi-

cations engineers specify mapping rules in the form of codes. Encoding and decoding proce-

dures induce mapping relations between codewords and world affairs. In the central model,

as in most expositions of communication theory, the world affairs to which codewords map

are strings of symbols. Nonetheless, mapping rules and the relations they determine are

present for the same reason as the biological case: the signalling strategy was selected to aid

coordination. In section 5.5 we will see that mapping rules are not identical with encoding

and decoding procedures. In the special case of the central model, however, they coincide.

Many biological signals, and most of those we will deal with in this thesis, are primitive:

directive and descriptive aspects are tightly coupled and both contribute equally to explana-

tions of behaviour. The waggle dance is primitive because its indication of the presence of

food is inextricably linked with its injunction to fly to that location. Likewise, signals in the
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central model are primitive. Codewords indicate source symbols and simultaneously direct

receivers to reproduce those symbols.

In sum, biology and communications engineering employ a common concept of signal

grounded in a common concept of function. In both cases mapping rules illuminate the

special explanatory role of signals. We therefore have prima facie reason to consider the

application of communication theory in biology. Now, let us turn to a wider cast of char-

acters. Understanding signals and their role in explanation requires understanding cues and

influence too.

1.3 Cues

Behavioural ecology has a category for would-be signals whose sender is not coadapted

with its receiver. They are called cues. Cues are sensory inputs on which receivers condition

their behaviour, but which were not produced for the purpose of being used. They may be

by-products of purposeful behaviour, as when mosquitos follow clouds of carbon dioxide

emitted by mammalian respiration. Or they may be environmental affordances, as when

plants track the position of the sun over the course of a day.

At several points in the discussion it will be useful to have a term covering both signal

and cue. Let us designate the term sign for this purpose.

Whether a given sign counts as a signal or a cue is relative to the coevolutionary status

of sender and receiver. An event that is a signal relative to a given receiver may be a cue

relative to a different receiver. For example, the territorial call of the collared sparrowhawk

is a signal to other sparrowhawks, because both the call and its subsequent aversion response
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are coadapted. But the same call heard by a brown thornbill is a cue, because the response

of the thornbill – increased vigilance for its sparrowhawk predator – did not contribute to the

evolutionary success of the call (Schneider and Griesser, 2013, p. 48).

Cues are sometimes called natural signs (Millikan, 2013a). The term ‘natural’ is apt

because any actor in a game theory setting whose behaviour is strictly independent from all

other agents can reasonably be called ‘Nature’. These agents comprise a fixed background

against which focal agents operate. In sender-receiver models, for example, Nature is a

player whose choices are random and are not affected by the choices of the other players. By

definition, Nature’s behaviour cannot be codesigned with that of other players.5 Players that

condition their own behaviour on Nature’s are reading cues.

1.3.1 The signal/cue distinction is explanatorily relevant

Because a signal is codesigned, aspects of its form can be explained by reference to its ef-

fects. The same cannot be said of cues, because their form is not purposefully shaped for

the receiver’s benefit. This is a consequence of signals having proper functions.6 We de-

fined signals in terms of the functions of other entities (both senders and receivers), but they

themselves have functions too. Like all functional behaviours, their form can be explained

by reference to the specific effects their form is designed to have. Cues do not share this

curious property, and biologists understand the relevance of the distinction. In response to

commentary from Sasha Dall and other workers in ecological theory, Étienne Danchin and

5The term codesign is to be read as ‘co-design’, not ‘code-sign’. Confusingly, both ‘code’ and ‘sign’ have
important meanings in this thesis. The term ‘code-sign’ is meaningless and shall not be used, despite LATEX’s
unfortunate tendency to hyphenate the term that way when split across lines.

6A complication: signals used as cues by eavesdroppers may possess features that promote secrecy. Then
their status as cues is indeed relevant for their design. Thanks to Ron Planer for pointing this out.
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colleagues agree that “by separating cues and signals, we can better understand both in order

to subsequently synthesize them” (Dall et al., 2005, p. 355).

Despite this difference, cues bear a kind of correspondence to world affairs too. Scientists

cite these in explanations of cue-reading behaviour. For example, mosquitos are attracted

to mammals by sensing the carbon dioxide they emit due to respiration. There exists a

tight spatiotemporal correspondence between carbon dioxide and mammal presence, and

this explains the fact that mosquitos successfully, non-accidentally locate their target.

Cues in general bear correspondence relations to signifieds.7 These relations are famil-

iar from philosophical accounts of natural information (Stegmann, 2015) or natural meaning

(Grice, 1957). Cues bear correspondence relations as a consequence of being maintained or

produced by stable or recurrent processes. For example, Polaris serves as a cue indicating the

direction of North because its position in relation to the tilt of the Earth’s axis stays the same

over long periods of time. Smoke serves as a cue indicating the presence of fire because it is

reliably produced by the process of oxidation, which consists of burning fuel.8

1.3.2 Correspondence relations are neither correlations nor mappings

Correspondence relations must be distinguished both from correlations and from mapping

relations. First, correspondence relations are not correlations. To spell this out a bit more, I

am introducing ‘correspondence relation’ as a theoretical term referring to the relation borne

7My use of the term ‘correspondence relation’ is meant to capture what Millikan (2017) talks about as
‘natural information’. This is perhaps a surprising use of the word ‘correspondence’, especially given its con-
notations in the history of philosophy of mind and language. I simply need a term to distinguish the kind of
relation borne by cues from that borne by signals, and I chose ‘correspondence’ because to my ear it has a less
functional sound than ‘mapping’. It is perhaps an unsatisfactory choice, but I haven’t found a better one yet.

8Millikan (2013a) gives the name “root signs” to cues considered with respect to their correspondence
relations; Fresco et al. (2018) use the term “datum”.
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by a natural sign toward its signified, as described in the theory given by Millikan (2017).

I treat ‘correlation’ in sense (c) of the Oxford English Dictionary (2020): “an interdepen-

dence of two or more variable quantities such that a change in the value of one is associated

with a change in the value or the expectation of the others”. In particular, there is no spe-

cific mathematical definition of ‘correlation’; it denotes any statistical relationship between

two variables. The clearest distinction between correspondence relations and correlations is

that the former are borne between tokens – individual signs and their signifieds – while the

latter is any measure of a relation between types (classes of tokens considered as statistical

variables). Further differences will become apparent as we proceed.9

Before moving on to the distinction between correspondence relations and mapping re-

lations, it is worth flagging two common misconceptions: first, the idea that cues ought to

be distinguished from signals by reference to correlation; second, that correlations are nec-

essarily spatiotemporal relations. First, it is a mistake to distinguish cues from signals by

defining the former in terms of correlation. Correlations can be borne between signal and

signified too, at the level of types. Later (section 3.4) I will argue that a popular measure

of correlation, mutual information, has a different interpretation when applied to the signal-

signified relationship than when applied to the cue-signified relationship. Second, it is wrong

to treat correlations as having something to do with spatiotemporal relations. For example,

9The relationship between signs and their signifieds is not always as clear cut as the phrase ‘token-token’
suggests. An examiner pointed out that mosquitos may use clouds of carbon dioxide as a sign of a group of
nearby mammals. There is not obviously a token-token relationship between any given molecule of carbon
dioxide and any given mammal (or if there is, such a relation need not be mentioned in an explanation of the
mosquito’s behaviour in moving towards the group). I suspect this issue can be resolved by changing the level
of grain at which cue and signified are specified: initially, the entire cloud is a single token; as the mosquito
approaches, individual puffs emitted by a single mammal allow the mosquito to lock on and bite. In any case, I
treat this as a problem of model choice (i.e. a problem for practitioners), rather than a problem for the salience
of the modelling framework I employ throughout this thesis (i.e. a problem for theorists).
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it is sometimes implicitly assumed that type A correlates with type B just in case A occurs

at the same time (and perhaps also location) as B. However, nothing in the definition of

correlation requires that the relationship between statistical variables be due to their time or

place of occurrence.

Now to distinguish correspondence relations from mapping relations. The former are

(by definition) borne as a consequence of natural processes other than joint selection, while

the latter are (by definition) a consequence of joint selection. Further, because signals have

functions which they can fail to perform, there is a reasonable sense in which mapping rela-

tions can fail to be borne. Because mapping relations are determined by mapping rules, they

can fail. Since correspondence relations are not determined by rules but by processes, they

cannot ‘fail to obtain’ in the same sense. These definitions, with slightly altered terminology,

are intended to be faithful to those given by Millikan (2017, Part II) (for correspondence

relations, there called “natural information”) and Millikan (1984, Part II) (for signals, there

called “intentional icons”).

In short, while there are cues and non-cues there are no ‘faulty cues’, whereas there are

indeed faulty signals. This is the position I take in the thesis, though there is disagreement

in the wider literature. One tradition considers anything an organism treats as a cue to be a

cue. On this view, there can be faulty cues: events a receiver treats as a cue but which do

not bear the relevant correspondence relation. For example, carbon dioxide produced by an

inorganic chemical process that a mosquito treats as a sign of mammalian presence would be

a false cue. The approach I favour reserves the notion of falsity for signals only. Purported

cues that fail to bear the correspondence relation are simply not cues – or at least not cues

of the signified in question. Carbon dioxide is not a cue indicating the presence of mammals
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when it does not bear the right relation to a mammal – namely, the relation of having just

now been produced by one.10

The view that there cannot be false cues flows neatly from the fact that signals have

functions and cues do not. There is no sense in which smoke produced by a smoke machine

is supposed to map to fire. But there is a reason why a signal intended to prompt a fire-

relevant response is supposed to map to a fire, even when there is no fire. The signal has

a proper function, and to perform that function non-accidentally it must map onto a fire. If

there is no fire, the signal fails to map. Cues are defined by correspondences they in fact

bear, as opposed to those they are supposed to bear. To be sure, there are tokens produced

by nature that animals misuse or mistake for cues. But they are not cues simply in virtue of

mistakenly being used. For the remainder of the thesis I follow this tradition.

1.3.3 The signal/cue distinction is explananda-relative

In models of agential interaction, the signal/cue distinction is a matter of whose design is

represented. Considered as part of a codesigned system, an intermediary is a signal. If

the design of the sender is ignored or unspecified, it is only a cue. However, if the sender

is treated as a feature of the environment, the signal/cue distinction disappears altogether.

Models of decision-making, in which a receiver conditions its behaviour on sensory input,

sometimes do not specify whether the sender was designed to produce that input. These

models ignore the distinction between signal and cue.
10There is a residual question about certain forms of mimicry: some weeds, for example, mimic the visual

appearance of domesticated crops and thereby successfully avoid destruction by humans. Plant appearance is a
cue to the human (or can be assumed so for the sake of argument); in mimicking this, the weed could be said to
be a source of misinformation. I suspect this kind of case can be resolved by treating the weed’s appearance as
a kind of false signal, even though the informational vehicle it is mimicking is a cue rather than a signal. Issues
of this kind are discussed further in chapter 6.
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If the signal/cue distinction is relative to what is being explained, it follows that the

distinction between mapping relations and correspondence relations is relative too. When

we ignore codesign, we ignore the mapping rules that pick out the states that the signals

are supposed to bear relations to. Thus there are no mapping relations. However, in being

converted into a cue, the former signal may still bear correspondence relations. Treating the

sender as part of nature removes its role in determining mapping rules, but gives it a new

role as mediator of correspondence relations.

Another way to describe the same perspectival shift is to say that sender behaviour is

relegated to the physical stance. As a node in a causal model, it is interpreted not as an

agent with a proper function but as part of Nature. Non-accidentally true signals become

cues. False signals, along with those accidentally true, become non-cues, because cues are

defined in terms of the natural processes that maintain their correspondence with signifieds.

For former signals, sender behaviour previously considered proper functioning now becomes

a natural process. We might say that ascending to the design stance is a case of figuring out

how to distinguish false signals from non-signals. It is by appeal to the sender’s function that

we achieve this.

All I am trying to show is that there is a consistent way to treat signals as cues by ig-

noring or holding fixed the sender. Organisms can be modelled as agents or as part of the

environment. Allowing for this switch of perspective is important, since it highlights the

need for a consistent account of the emergence of signals from cues.11

11Does this entail that the definitions of signal and cue are merely pragmatic or instrumental? No: senders of
signals really do have coadapted proper functions, even though we may model them as non-functional physical
processes. That we can do this raises questions about proper functions, however – whether they themselves are
real or merely instrumental. I treat them as real, and leave as an open question how it is possible for scientists
to consistently and usefully switch between the physical and design stances.
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Some explananda simply do not require consideration of the coevolutionary status of

signs. From the perspective of these explananda, there is no signal/cue distinction. A scien-

tist may be interested in the physiological mechanisms by which sensory input is transformed

into behavioural response. They might even be interested in whether such behaviour is good

for the receiver. Establishing the latter requires adverting to some correspondence between

sign and world. For example, the sign might indicate that the sender is able to fight. The

receiver’s fleeing was adaptive for it on this occasion. But this alone does not tell whether

the sign is a cue or a signal; it does not tell us whether the correspondence is of one kind

or another. The difference is immaterial for these explananda. On the other hand, if we are

interested in why receiver behaviour is reinforced, or why the form of the signal is what it is,

we must refer to codesign.

Mathematical results that apply to cues properly belong to decision theory. That frame-

work is the study of individual agents and how their behaviour depends on utilities, back-

ground knowledge and cues available in their environment (Jeffrey, 1990; Savage, 1954).

Communication theory is closely related to both decision theory and game theory. In effect,

the central model is a game in which both players have common interest and must collabo-

rate on the task of reconstructing symbol strings (more on this in section 3.2). Game theory

describes multiple agents whose behaviours are determined by natural or rational selection,

and whose actions affect other agents (Maynard Smith, 1982; von Neumann and Morgen-

stern, 1944). Decision theory deals with one agent at a time, navigating an environment in

which cues and perhaps signals are available to guide behaviour. Several results in communi-

cation theory do not require codesign, and so apply to cues as well. Signal detection theory

is a collection of tools at the intersection between the two: it properly belongs to decision
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theory, but its name betrays historical ties to communication theory (Wiley, 2013b).

All that being said, the distinction between signals and cues is continuous. Many signals

start their lives as cues, slowly attaining proper functions as a result of coadaptation between

sender and receiver. Rather than searching for a threshold at which a cue suddenly gains

a proper function, we would do better to place familiar examples on a continuum. The

explanatory distinction between signals and cues is real despite the vague boundary between

them.

1.3.4 Ritualisation turns cues into signals

Cue-reading behaviour is a probable evolutionary origin of many signals. In these cases, re-

ceivers initially gained a benefit by conditioning responses on some recognisable feature

of senders. This feature subsequently came under evolutionary control, when selection

favoured those senders with more elaborate versions of the trait. The name for this evo-

lutionary route is ritualisation. For example, warning colouration of toxic frogs may have

begun as an accidental correlation between morphology and toxicity (Lehmann et al., 2014).

It was in their predator’s interest to heed such colours. They either learned or were selected

to avoid those would-be prey. This is cue-reading. Subsequently, selection favoured elab-

oration of recognisable colours, and frog morphology changed to make recognition more

probable. This is signalling.

There are two connotations of the term ‘ritualisation’. The first is the evolutionary story

just given. The second is the repetitiveness or stereotypy commonly observed in signals that

followed this evolutionary path. When a receiver possess a conditioned response, and that

response is in the sender’s interest to elicit, the latter may redeploy the signal many times in
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quick succession. Much theoretical work surrounds the specific form of signals of this kind

(Maynard Smith and Harper, 2003, §5). Wiley (1983, §5.2.2) notes that ritualisation in this

sense is reminiscent of what in communication theory is called redundancy, improving the

prospects of an apt response. This provocative link is explored further in section 5.5.

To conclude, the distinction between signals and cues is robustly defined and explanato-

rily salient. There remains, however, a continuum between the two categories. The hyper-

cube method (section 1.5) is a good way to capture their relationship. Before then, we need

to explore a third category of functional interaction: influence.

1.4 Influence

Receivers condition their behaviour on cues, despite not being coevolved with the sender of

the cue. Similarly, influence is not a coadapted behaviour, but is performed by a sender in or-

der to control receiver behaviour. Behavioural ecology has long recognised these three kinds

of joint behaviour. Calling signals honesty, cues mind-reading, and influence manipulation,

Guilford and Dawkins give the following account:

Honesty, manipulation and mind-reading, then, can all be seen as strategic com-
ponents of signal design or, in the case of mind-reading, as a strategic compo-
nent of non-signal design. Only the receiver benefits in mind-reading, only the
emitter in manipulation but both benefit in honesty.

Guilford and Dawkins (1991, p. 10)

Like many behavioural ecologists, Guilford and Dawkins consider both honesty and ma-

nipulation to fall within a category which they label “signal”. What is the rationale behind

this categorisation? Signals and influence have in common that they are produced because of
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evolved owing to the
effect on the sender

benefits the receiver to
respond

signal + +
cue – +
influence + –

Table 1.1: Distinguishing strategic interactions. Adapted from Diggle et al. (2007b, Table 2,
p.1242) (they use the term “coercion” for what I call influence). The original caption reads:
“Types of communication are distinguished depending upon their fitness consequences to the
sender and the responder. (Consequences are either beneficial (+) or costly (–).)”

their functional effects. This is why several prominent accounts of biological communication,

especially in behavioural ecology, consider both cooperative signalling and manipulative in-

fluence as signals. This categorisation also owes something to the fact that many common

examples of animal interaction are broadly manipulative. Because ‘signal’ is the generic

term applied to all such behaviours, it seems natural to draw a distinction between cues on

the one hand and both cooperative and manipulative interactions on the other.

Whatever the benefits of a category that covers signals and influence but not cues, I prefer

to distinguish all three. Consider table 1.1, taken from Diggle et al. (2007b, Table 2, p.1242).

Each interaction is typed by the benefit or detriment it brings to participants. This is a useful

way of distinguishing interactions because it follows the contours of explanation available

for communicative behaviour. We should expect different interactions to possess different

physical features and to follow different trajectories over evolutionary time. For example,

truly cooperative signals that are not threatened by defection should be optimised for low

energy expenditure. The only noise such signals need to overcome is that present in the

environment. In contrast, influence will have features designed to overcome the receiver’s

reluctance to respond. In these cases, the receiver is a further source of disruption from the
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perspective of the sender. Certain features of the receiver act as a barrier to the sender getting

what it wants. The sender must optimise the signal to bring about the desired response. This

includes expending energetic resources.

This distinction, between costs paid to overcome noise and costs paid to overcome re-

ceiver reluctance, is reflected in the literature as the distinction between efficacy design

and strategic design (Guilford and Dawkins, 1991) (Maynard Smith and Harper, 2003, §5).

Both signals and influence display efficacy design, because both need to reach receivers. On

the other hand, strategically designed signals are those that correspond to some world affair,

and elicit a response because of this correspondence. Influential behaviours do not have the

same feature. Their strategic design consists of features designed to elicit a response in the

receiver without necessarily corresponding to anything beneficial for the receiver.12 Finally,

cues are not designed to bring about a receiver response, so their physical features cannot be

explained by reference to this kind of design. Indeed, many cues emitted by animals face

opposing selection pressure. Exploitation is harmful, and they would do better to be hidden.

Camouflage techniques and certain kinds of mimicry are canonical examples.

In sum, our three kinds of interaction are distinguished by the selection pressures acting

on them. More precisely, they are distinguished by selection pressures relevant to a given

explanation. Signals can be viewed as cues when the sender’s functional status – whether it is

coadapted with the receiver – is ignored. Similarly, signals can be viewed as influence when

the receiver’s functional status is ignored. The receiver is treated as part of the environment,

12See section 5.5 for comments on the relationship between the strategic/efficacy distinction and
source/channel coding in communication theory, and section 7.4 for examples of strategic and efficacy design
in nature.
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and the distinction between efficacy costs and strategic costs collapses.13

1.5 Interaction hypercubes

The boundaries separating signals, cues, and influence are porous, with many intermediate

cases. This reflects the fact that these categories are evolutionarily continuous. Cooperative

signals evolve from both cues and influence. A fourth category of cooperative mechanisms

(discussed further below) also serves as an evolutionary precursor to signals. To distinguish

signals from other kinds of interaction, instead of providing necessary and sufficient con-

ditions on signalhood, we can identify property dimensions that jointly determine a hyper-

cube.

1.5.1 What are hypercubes?

Hypercubes help distinguish dimensions of variation. They allow us to represent and com-

pare phenomena according to the different kinds of properties they possess. The term ‘hy-

percube’ in mathematics means an n-dimensional analog of a cube. Here I use it to mean a

(possibly) n-dimensional space, that has the shape of an n-dimensional cube, within which

different phenomena or concepts can be represented. Sometimes these spaces are only 3-

dimensional (figure 1.5 A, B and D); sometimes more than three dimensions are specified

but only three can be graphically represented at once (figure 1.5 C, figure 1.10). One could

simply call these ‘cubes’, but that would miss the implication that these spaces can in princi-

ple possess more than three dimensions.

13I discuss deception at length in chapter 6.
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Use of the hypercube as a means of representation has a patchy history. It seems to have

been introduced several times independently. In the context of ecology, Hutchinson (1957,

p. 416) defined the “fundamental niche” of an animal as an “n-dimensional hypervolume”

comprising all environmental variables relevant for that creature’s survival. His goal was not

to depict any such volume, only to show that the concept of environmental niche was a sound

one.

Churchland (1996, 24ff) uses a spatial representation to explain how sensory representa-

tions are categorised by the brain. Different kinds of taste cell (sweet, salty, sour) combine at

different levels of activation to produce a three dimensional “taste space”. Familiar tastes can

be located within this domain (figure 1.5A).14 Churchland depicts similar cubes for colour

and face space. These representations also have a comparative use: Churchland’s figure 2.4

(his page 27) depicts the relative size of human and canine olfactory spaces, starkly illu-

minating the extent of a dog’s universe of smells. Gärdenfors (2004, 2014) tries to extend

perceptual to conceptual spaces, eventually to ground a theory of semantics. Hypercubes are

therefore a potential means of capturing cognitive representations.

In another domain, Mitchell (2000) argues for a continuum view of scientific laws. Com-

paring physical to chemical and biological ‘law’, she distinguishes three dimensions across

which scientific generalisations can be compared: strength, stability and abstraction. Mitchell’s

figure 3 (her page 263) depicts several scientific laws and philosophical generalisations ac-

cording to their ranking on these three scales (figure 1.5B). For example, the law of conser-

vation of mass is extremely abstract, strong and stable. At the other end of the spectrum,

14Confusingly, Churchland (1996, p. 24) cites “Jean Bartoshuk” as the source of the image on his page 24.
There is a psychologist named Linda Bartoshuk who works on the psychophysics of taste; I have not yet found
a corresponding diagram in her writings.
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Goodman’s generalisation that all the coins in his pocket are copper is neither strong, nor

stable, nor abstract. While different propositions could be ranked on a single dimension of

contingency (depicted in Mitchell’s figure 2, p.253), the relations between them are made

much more explicit by teasing apart dissociable dimensions.

More recently, Godfrey-Smith (2009) puts the hypercube method to work by characteris-

ing Darwinian populations. Godfrey-Smith highlights five properties of populations that help

determine whether they are paradigmatically, minimally, or marginally Darwinian (three of

these dimensions are depicted in figure 1.5C). For example, paradigmatic cases are those

with high-fidelity heredity, a smooth fitness landscape, and whose reproductive fitnesses de-

pend on intrinsic character (Godfrey-Smith, 2009, fig 3.1 p.64). This last property contrasts

with extrinsic causes of reproductive differences, such as fatal lightning strikes. Choosing

five dimensions allows for mixing and matching depictions of two- and three-dimensional

spaces.

Finally, Dennett (2017) extends Godfrey-Smith’s account to populations of cultural items.

He first places several culturally replicating populations into Darwinian space (his figure 7.4)

before creating his own cube to capture different aspects of design (his figure 7.5) (figure

1.5D). The least ‘intelligent’ form of design is characterised by low comprehension, bottom-

up processes and random search. Termite mounds and other animal structures belong in

this corner. In the opposite corner, design resulting from top-down directed search by com-

prehending agents characterises many paradigmatic human cultural achievements such as

Gaudí’s Sagrada Familia, Turing’s theory of computation and Bach’s cantatas.
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Figure 1.5: Examples of hypercubes depicted as three-dimensional cubes. A Churchland
(1996, p. 24), “Taste space : the position of some familiar tastes.” B Mitchell (2000, p. 263),
“Multi-dimensional conceptual space for scientific laws.” C Godfrey-Smith (2009, p. 64),
spatial representation of Darwinian populations. D Dennett (2017, §7), “Inverted Darwinian
space with Darwinian phenomena at (0,0,0) and intelligent design at (1,1,1).”
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1.5.2 A hypercube for biological interactions

Signalling interactions may be characterised by several features. I have tried to select the

most salient ones for my purposes. Consider the following:

• Common interest: the extent to which selection acted on sender and receiver jointly.

• Resource separation: the extent to which the material and energy required to produce

the response is provided by a source other than the intermediary.

• Arbitrariness: the extent to which a different signal vehicle (different codes, different

mapping relations) could have performed the same signalling function.

• Transmission rate: bits per second transmitted on average by each signal.

We can depict a maximum of three dimensions at a time. In this section I use 2D and 3D

spaces. As an example, figure 1.6 depicts several interactions already mentioned in a cube

defined by common interest, resource separation, and arbitrariness. I now introduce each

dimension in turn.

1.5.3 Common interest

Common interest captures the extent to which sender and receiver enjoy similar benefits from

similar outcomes. The intuitive way of representing common interest is as a line with full

common interest at one end and conflict of interest at the other (figure 1.7A). This represen-

tation conflates influence and cue-reading, both of which entail divergent interests. There is

a more subtle way of conceiving the dimension that would allow us to distinguish cues and

influence. We could let the ends of the continuum represent differential benefit of sender and

receiver. In this way, cue-reading exploitation and manipulative influence appear at either

end of the spectrum, while full common interest appears in the middle (figure 1.7B).
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Figure 1.6: A simple example of a hypercube. The resource separation dimension captures
how ‘mechanistic’ a phenomenon is. In this diagram and subsequently, unless otherwise
indicated, dimensions should always be read as increasing from left to right and bottom to
top, even where arrows are omitted.
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Figure 1.7: Two ways to represent common interest. A The canonical way. B An alternative.

Figure 1.7 includes three examples. One is cue-like, one is signal-like, one is influence-

like. Aposematic colouration is influence-like because non-toxic senders sometimes hijack

the signalling system. Treating honest and deceptive senders as the same type, senders

benefit more than receivers because there is more deceit than exploitation.15 Conversely,

mosquitos sensing CO2 gain a benefit at the expense of the mammal that emits the chemical.

In figure 1.7B, eusocial behaviours like the waggle dance lie in the middle of the contin-

uum, as senders and receivers enjoy the same benefit as a result of their close evolutionary

relationship.

In the biological case, cycles may develop. When receivers become overly trusting,

senders can get away with more manipulation. Deceptive senders can enter the system and

15See section 6.3 for considerations for and against modelling deceptive and honest signallers as the same
type.
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gain a benefit, pushing the system toward the left of the continuum. However, this generates

selection pressure on receivers to become more discriminating. As they refuse to counte-

nance dishonest senders, selection induces greater honesty, and the system moves to the

right until it is closer to the middle.

Frank (1998, p. 247) likens these cycles to parasite/host dynamics, but notes that this per-

spective “has not been developed by explicit models.” More recently, philosophers interested

in game-theoretic representations of signalling conflict have made progress (Godfrey-Smith

and Martínez, 2013; Martínez, 2019; Martínez and Godfrey-Smith, 2016; Shea et al., 2017).

Building on the work of Skyrms (2010), these authors explore communication in explicitly

conflictual situations.

When combining common interest with other dimensions, I exclusively use the canonical

format. There are two main reasons for this. First, a reader seeing this dimension for the first

time would most likely expect the canonical format. It is worth keeping to reader expecta-

tions when possible, to avoid unnecessary confusion. Second, common interest between two

parties may be known before those parties engage in a signalling (or signal-like) interaction.

In such a case there could be determinate conflict of interest without it yet being determined

which party would benefit from interaction between the two. It may therefore be possible

to place the pair on the scale depicted in figure 1.7A without it having a determinate spot in

figure 1.7B: as it were, there are two positions on figure 1.7B compatible with each position

on figure 1.7A (with the exception of full common interest).
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1.5.4 Resource separation

There is in electrical engineering a split which is known in Germany as the split
between the technique of strong currents and the technique of weak currents,
and which we know as the distinction between power and communication engi-
neering.

Wiener (1948, p. 39)

François Jacob (1973, p. 251), in a treatise on molecular systems, spoke of two forms of

power: “the power to do and the power to direct what is done.” Paradigmatic signals trade

away the first in order to capitalise on the second. They guide receivers in performing ac-

tions. The material and energy for those actions is provided from elsewhere. In other words,

paradigmatic signals are those for which energy resources used to send the signal, and mate-

rial resources from which it is made, are distinct from those energetic and material resources

used in the receiver response. We can call this aspect resource separation.

This dimension, while clearly significant, is curiously underappreciated in the litera-

ture.16 We must at least try to capture the intuition, even if not formally. Here is my sug-

gestion.17 Consider a putative signal. Take the energy and material that the receiver uses to

perform the response, and calculate the percentage of those resources provided by the signal

itself. A high percentage means that most of the energy and material used to perform the

response was provided by the putative signal. This makes for low resource separation. On

the other hand, if little or none of the resources consumed in the response derive from the

16There are at least two significant exceptions. First, in the context of animal communication, Wiley (1994,
p. 162) defines a signal as “any pattern of energy or matter produced by one individual (the signaler) and
altering some property of another (the receiver) without providing the power to produce the entire response”
(emphasis original). Second, since the original version of this thesis was submitted, Artiga (2020) has defended
a claim very similar to that suggested here. See also footnote 2 page 11.

17I am very grateful to the anonymous examiners of this thesis for refining and clarifying this suggestion.
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signal itself, there is high resource separation.

Paradigmatic signals have high resource separation. All of the energy and material re-

quired to produce the response is provided by the receiver (or some other source that is

distinct from the signal). Signals in the central model can be classed as paradigmatic. While

it is typically left unspecified where the energy to perform the response (decoding) comes

from, it is assumed that the energy required to send the signal is just used to overcome noise.

It is implicit that the receiver has its own energy source, and therefore that none of the energy

required to produce the response is provided by the signal itself.

At the other extreme, some intermediaries between putative senders and receivers are

such that all of the energy required to produce the response is provided by the ‘signal’. Such

intermediaries are not typically considered signals at all. For example, a camshaft in a com-

bustion engine shares several properties with paradigmatic signals. It mediates between a

sender and receiver. The shape of the cam and the rotational speed of the shaft determine the

rate at which a valve opens and closes. Since the valve’s proper function is to open and close

at a certain rate, it counts as a receiver guided by the cam. Camshafts fit our preliminary

characterisation of signalling behaviour. We could think of the cam as ‘directing’ the valve

to open and close, but we do not want to think this. The valve does not ‘interpret’ the position

of the cam; rather it is physically pushed by it. All of the energy needed to open the valve is

provided by the cam. There is no resource separation in this system: the receiver’s act is a

certain kind of regular movement, and all of the energy required to perform this movement

is provided by the intermediary.

Signals can evolve along the dimension of resource separation. Contemporary relatives

of the Venus flytrap use sensitive tentacles to wrap around prey, limiting their escape (see the
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Figure 1.8: Paradigmatic signals are those for which the resources required to produce
the response are separate from the signal itself. The camshaft causes an instant effect, but
all of the energy of the effect is provided by the camshaft itself. Tentacles of the King
sundew (Drosera regia) slowly wrap around prey, causing leaves to enfold the victim. We
might suppose that leaves move partly under their own power and are partly ‘pulled’ by the
tentacles. Finally, the trigger hairs of the Venus flytrap (Dionaea muscipula) are a specialised
version of those tentacles, whose only job is to trigger the snap trap shut. The energy required
to shut the trap is stored as elastic potential of the trap, rather than being provided by the
action potential. Evolution of the snap trap from a Drosera-like ancestor corresponds to
movement from left to right along this dimension.

case study on p.42). Similar tentacles were likely possessed by a common ancestor with the

flytrap, and evolved into its trigger hairs. Figure 1.8 depicts this relationship.

How the Venus flytrap snaps

The Venus flytrap (Dionaea muscipula) famously catches insect prey in a rapidly shut-

ting chamber called a snap trap. Nectar and a brightly coloured surface attract unwary

insects to a platform, from which sprouts a bank of trigger hairs. When prey stumble

over the hairs, action potential occurs. The electrical signal causes a change in the cur-

vature of the open leaf, leading to a rapid release of elastic potential energy (Forterre

et al., 2005). This energy release is constrained by the geometry of the leaf, and the

trap snaps shut.
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Snap traps evolved only once. Two related genera use them, with one species in each.

The Venus flytrap represents Dionaea while the waterwheel plant (Aldrovanda vesicu-

losa) is the only member of Aldrovanda. The closest related genus is Drosera, which

contains many sticky-trap plants. We tend to look there for pre-adaptations and clues

to evolutionary history. For example, tentacles of the king sundew (Drosera regia)

slowly enfold the plant’s victim, causing leaves to wrap around it. Eventually leaves

fully enfold the prey, allowing tentacles to digest extracted nutrients. The trigger hairs

of the Venus flytrap are a specialised version of those tentacles, whose only job is to

trigger the snap trap shut. Gibson and Waller (2009, p. 581) describe Drosera tenta-

cles as “an essential ‘pre-adaptation’ for (and homolog of) the trigger hairs” of the

Venus flytrap. These tentacles became trigger hairs in the Venus lineage.

Snap traps seemingly allow larger prey to be captured more reliably. Tentacles become

teeth and trigger hairs by losing their stalks and mucilage, the gluey substance used to

trap prey (Snyder, 1985; Williams, 1976). In other words, tentacles lost mechanical

features as they gained a signalling function. In plants, action potentials usually have

an osmotic rather than communicative purpose. That the same signalling mechanism

arose in Venus flytraps (and other vascular plants such as Mimosa pudica) and in

metazoan nervous systems is an example of convergent evolution.

1.5.5 Arbitrariness

The notion of arbitrariness is notoriously multifaceted. We can draw on Planer and Kalkman

(2019) who distinguish two definitions of an arbitrary signal. Roughly these are signals that
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do not resemble the signified and signals that could have been different.

First, a signal is arbitraryR if it does not resemble its signified. This means it is not iconic.

At first glance this looks like a useful dimension for our task. However, Planer and Kalkman

employ a strong sense of “iconic”, one which requires appreciable cognitive sophistication

and rules out (for example) the waggle dance as iconic. Every signal discussed in this thesis

is arbitraryR, which means the notion cannot do any work for us (though it does plenty of

good work for Planer and Kalkman). In the following, I leave arbitrarinessR aside.

In contrast, arbitrarinessA is just what we need. A signal is arbitraryA if structurally dis-

similar signals might have played the same communicative role. Modality is doing all the

work here: how we spell out “might” determines which signals count as arbitrary in this

sense. For example, bacteria use acyl homoserine lactone (AHL) to coordinate quorum sens-

ing (Hughes and Sperandio, 2008). Other signalling molecules are known to play similar

roles, such as autoinducers AI-1, AI-2, and CAI-1 (Mehta et al., 2009, p. 2). If those alterna-

tives could play the same chemical roles as AHL, the actual AHL signal would be somewhat

arbitrary. This is consistent with AHL having several signalling roles, for some of which it

is more arbitrary than others.

From now on, unless explicitly stated, the term arbitrary should be read as meaning

arbitraryA.

The first piece of good news is that this definition accords with intuition that signals in

the central model are extremely arbitrary, and most biological signals are not. Signals in the

central model are encoded sequences of 1s and 0s. There are a wide variety of different codes

available for different engineering purposes, and even within the same coding scheme there

are typically many different ways to assign codewords to source symbols. Any given choice
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of codeword assignment is clearly arbitrary. In contrast, biological signals are typically

tightly bound to the sensory and behavioural constraints of the agents involved. Planer and

Kalkman (2019, pp. 15–6) discuss the kinds of internal and external constraints that impact

the size of the set of viable alternative signals in a given context.

More good news: the account allows us to distinguish between the arbitrariness of dif-

ferent aspects of signals. Words of human natural language are the canonical example of

arbitrary signals, but they are decidedly not arbitrary with respect to their length. Indeed,

a rather robust generalisation called Zipf’s law ties a word’s length to its frequency of use

(Kanwal et al., 2017). Plausibly, frequency of use has some relation to semantic content.

Therefore, at least with respect to this aspect, word form is not so arbitrary after all. This

doesn’t threaten the view of human language as paradigmatically arbitrary, because words

possess many other features. For example, different phonetic combinations could in principle

serve the same purpose for a given word.

The canonical example of an arbitrary biological signal is the genetic code. Without

going into detail, the translation between nucleotide triplets and amino acids is thought to

be contingent: different assignments would work just as well in converting nucleotide se-

quences into proteins. In this regard, Stegmann (2004) is the usual work cited; although

it is unclear how similar his definition is to the notion of arbitrariness we have adopted, it

should be fairly obvious that the code is arbitrary in the sense we want. However, as with

language, there may be unnoticed efficiency disparities between rival codes. Such effects

would threaten the arbitrary status of the code (Hofstadter, 1985, §27).

See again figure 1.6 for examples of familiar signals that differ along this and other

dimensions.
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1.5.6 Transmission rate

As presented in the central model, transmission rate measures the number of bits per sig-

nal.18 Bits are measures of probability change. Transmission rate is therefore a measure of

probability change per signal, or more transparently, a measure of how much signals change

probabilities.19

For example, honeybees improve foraging success by restricting their search space to

locations indicated by the waggle dance. Each dance changes the probability distribution

of nearby food in a principled way. From this perspective, transmission rate measures the

accuracy of a signal. The greater the change in probabilities, the more reliably receiver bees

find the indicated food source. Section 2.2 explores in more detail informational measure-

ments of the waggle dance derived by Haldane and Spurway (1954) from Karl von Frisch’s

statistical data.

Most biological signalling channels have low bitrate, especially compared to artificial

channels. This is because the range of choices biological devices face is much lower than

that of human-designed systems. A computer monitor must choose between billions of pos-

sible configurations each second, requiring Megabit transmission rates from the processor.

In contrast, biological devices (perhaps excluding those associated with cognition, such as

perceptual states) typically choose among a small class of options.

18When the number of signals that can be sent per second is known, this entails a rate given in bits per
second.

19Recent work on the notion of causal specificity (Griffiths et al., 2015) suggests measuring the extent to
which a cause is specific to its effect as the mutual information between them (strictly, between the effect
and interventions on the cause). This characterisation is analogous to the transmission rate concept, which is
measured as the mutual information between transmitted and received signals (appendix A). Part of the benefit
of this concept of causal specificity is that it allows us to precisify the idea that genes are more specific causes
of their products than non-genetic mechanisms. This perspective aligns with my claim (below) that genetic
transcription and translation possess relatively high transmission rates.
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Choices need not be between discrete options. Consider a biological device facing the

problem of how much of a particular chemical to release. Distinctions between different

volumes are not discrete, and should be modelled using continuous parameters. The waggle

dance does not distinguish discrete partitions of the surrounding environment, and it too

should be modelled continuously in order to derive the appropriate transmission rate (see

chapter 2).

Adding a dimension for transmission rate to our hypercube provides the most obvious

distinction between artificial and biological signals (figure 1.9). While artificial devices are

strictly cooperative and typically high-rate, biological signals are beset by divergent interests

and their transmission rate is often very low.

The genetic code deserves special mention. If we restrict attention to the operation of

transcription and translation machinery inside the cell, the genome is an instruction for build-

ing a sequence of amino acids. We can model the situation as follows. There are 64 possible

messages (4 nucleobases, 3 bases per codon, 43 = 64) and 21 possible outcomes (20 amino

acids plus one ‘stop’ action). Maximum transmission rate would occur when all outcomes

are equiprobable, so each codon would transmit log21 = 4.39 bits.20 According to Fuchs et

al. (2014) translation is slower than transcription, so we need only look to the former to find

the maximum available rate. Prabhakar et al. (2017, p. 1354) cite Young and Bremer (1976)

as observing a translation rate of 5-20 amino acids per second in Escherichia coli. Each

amino acid is indicated by a single codon, so the maximum rate would be 4.39 bits/codon

or 87.8 bits/second. Compare this to the honeybee waggle dance. Haldane and Spurway

20The capacity is larger than this because (ignoring noise) each codon could carry log64 = 6 bits by signi-
fying a unique outcome.
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(1954, p. 255) estimate each dance to carry at most 5 bits about the location of food (see also

section 2.2). The duration of each dance is highly variable and dependent on factors such

as food quality. Nonetheless, we can take the results of Seeley et al. (2000, Table 1, p.815)

to indicate a very rough average of 18 seconds per dance.21 Such a dance conveys around

5/18 = 0.28 bits/second. Although the axis of figure 1.9 is not to any kind of scale (and the

central model should be thought of as indefinitely higher than the genetic code), the disparity

between the waggle dance and the genetic code reflects these calculations.22

1.5.7 Placing paradigms on the hypercube

Each scientific discipline draws on proprietary explanatory resources. Historical contingen-

cies have led to different subdisciplines covering different regions of conceptual space. These

regions are often disconnected from each other, but they are in principle continuous. After

all, one of the lessons of evolutionary biology is that discrete typological thinking is often

inappropriate. Already well-learned in the case of species and other groupings, the lesson

holds true for behavioural interactions too.

We can place entire disciplines on the hypercube, based on what they assume about

signalling (figures 1.10, 1.11, 1.12, and 1.13):

• Cellular signalling: fully cooperative, high resource separation, not very arbitrary,

low transmission rate.
21This time was noted for a food source consisting of 2.50 mol/litre sucrose solution, and includes only time

spent dancing.
22An anonymous examiner suggested using bits/channel use rather than bits/second to measure this dimen-

sion. One of the problems with a bits/channel use measure is determining what counts as a single use of the
channel. For the genetic code, is each codon triplet a single channel use? Or each strand of DNA? If the latter,
channel uses can vary greatly in length. Furthermore, a telegraph wire might only have 1 bit/channel use (be-
cause each binary symbol counts as a single use of the channel), while the waggle dance has 5 bits per dance.
This fails to capture the vastly greater information rate that can really be transmitted by telegraph.
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Figure 1.9: Transmission rate (bits/second) in the central model is determined by the size
of the lexicon and properties of the channel, and is in principle unlimited. In comparison,
the transmission rates of biological signals are extremely small (with the notable exception
of the genetic code; see main text for details). Scent trails appear to have similar bits/signal
measures to the waggle dance (Wilson, 1962) but take longer to traverse on average than the
time it takes to perform a waggle dance, so scent trails transmit fewer bits/second. The wag-
gle dance itself probably evolved from a less precise (and therefore lower-rate, see section
2.2) communicative behaviour called the round dance. Notice that mechanisms like the
camshaft would have transmission rates if treated as putative signals; they ‘select among’
causal effects. Transmission of a single bit would be interpreted as the opening or closing of
the receiver valve, as those are the two functional states controlled by the camshaft. The rate
of a camshaft would be determined by converting revolutions/minute into bits/second, and
would be relatively high in comparison to biological signals.
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• Bacterial signalling: largely cooperative, high resource separation, not very arbi-

trary23, low transmission rate.

• The genetic code: largely cooperative, high resource separation, extremely arbitrary,

high transmission rate.

• Animal signals: conflictual, high resource separation, large variation in arbitrariness,

low transmission rate.

• Central model: fully cooperative, full resource separation, very arbitrary, high trans-

mission rate (in principle unbounded).

Two distinct evolutionary origins of signals can be understood as two paths within the

cube. First, a path leads from cues and influence on the bottom-left edge of figure 1.10

(or bottom-left corner of figure 1.11) to the various forms of biological signalling on the

right. This is the pathway cited in discussions of ritualisation, and inter-organismal signalling

appears to be very often a result of it. It can be further divided into two, depending whether

the original interaction was cue-like or influence-like. Second, a path leads from mechanical

features at the front-bottom-right corner to certain kinds of intraorganismal signalling (not

shown). In particular, the evolution of Venus fly trap trigger hairs took this pathway. It is not

clear to me how common this pathway is; especially since cellular signalling (which would

be a good candidate for it) is more likely a consequence of the cue-pathway during the onset

of true multicellularity. Nonetheless, it is worth pointing out this mechanical pathway as a

possible explanation for the emergence of signals. Both pathways are depicted as large black

arrows in figure 1.13.

23Both cellular and bacterial signalling might be more arbitrary than I credit here, especially given plasticity
in the definition of arbitrarinessA.
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Figure 1.10: Paradigms of biological signalling, the central model of communication theory,
and other non-signalling interactions. Figures 1.11, 1.12, and 1.13 respectively depict views
through the front, right, and top faces of this cube.
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Figure 1.11: View through the front face of the cube depicted in figure 1.10.

Figure 1.12: View through the right-side face of the cube depicted in figure 1.10.
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Figure 1.13: View through the top face of the cube depicted in figure 1.10 (i.e. a bird’s-
eye view of the cube). Two pathways of signal evolution are depicted as movement toward
the region of paradigmatic signalling in the top-right quadrant: 1 evolution from cues and
influence (e.g. the waggle dance); 2 evolution from mechanical features (e.g. Venus fly trap
trigger hairs).



Chapter 1. Signalling in the abstract 54

The question whether communication theory generalises to biological signals depends

on whether its formal tools are restricted to the top-right corner of this cube. Note first the

proximity of the genetic code to communication theory. The genetic code displays several

marks of being well-engineered for its informational job (Bergstrom and Rosvall, 2011). In

part because it inhabits the same area of the hypercube, Bergstrom and Rosvall (2011) argue

for the applicability of definitions and concepts from communication theory in genetics.

In the remainder of the thesis, I argue those tools are generalisable across the entire hyper-

cube. Communication theory can and should be expanded to include all phenomena under

discussion. Teleosemantics provides an interpretation of communication-theoretic mathe-

matics throughout the space.

It might be thought that game theory covers the entire space already. Indeed, what I have

in mind is less an extension of communication theory than a plea for unification. Game the-

ory, communication theory and decision theory all draw on the same formal repertoire. For

some reason, many scholars accept game theory and decision theory as modelling strategies

in biology, while disbarring communication theory from the same job. By the end of the

thesis, it will be clear that such a position is inconsistent.

1.5.8 Marginal cases and non-cases

Teleosemantics is thought by some to be too liberal because it includes mechanistic inter-

mediaries within its scope. However, the central insight behind the theory is made more

plausible by focusing on paradigmatic signals. Hypercubes are one particularly vivid way of

distinguishing paradigmatic signals from marginal cases.

The hypercube analysis shows that the sender-receiver paradigm allows marginal cases.
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This claim had previously been disputed by Neander (2017). Neander argues that sender-

receiver accounts impose all-or-nothing requirements on putative signals (Neander, 2017,

p. 277). She argues from this premise to the conclusion that sender-receiver accounts at-

tribute content to vehicles that intuitively are contentless. The example she draws on is a

class of enzymes with the generic name protease, used in the digestive system. Protease

is transported from the pancreas to the gut to aid in digestion. Neander takes this system

to have sender-intermediary-receiver structure. According to sender-receiver teleosemantics,

protease would therefore counts as an intermediary between cooperating entities. Further-

more, the gut can digest protein when protease arrives, and increases in protein are accom-

panied by increases in the release of protease. Given these facts, the sender-receiver account

entails that protease is a signal of the presence of protein in the gut. Neander finds this result

implausible and cites Sterelny (1995, p. 256), Ramsey (2007), Burge (2010, pp. 294-307)

and Schulte (2015, p. 10) in her defence. Rejecting protease as a signal (she uses the term

‘representation’), Neander treats it as a counterexample to sender-receiver teleosemantics.

However, there are two problems with Neander’s argument. First, she claims that sender-

receiver teleosemantics places “all or nothing requirements” on representational vehicles

(Neander, 2017). In this section I have motivated a view to the contrary. Sender-receiver

teleosemantics, like any theory that purports to outline a kind with which scientists can the-

orise, allows for marginal cases. When it comes to signals, I have tried to outline where I

think the margins lie: primarily at the limits of common interest and resource separation,

secondarily at the limits of arbitrariness and transmission rate. If protease really is an inter-

mediary in a sender-receiver partnership, it might not qualify as a paradigmatic signal due to

failing to lie within the paradigmatic region of the resource-separation dimension. From the



Chapter 1. Signalling in the abstract 56

facts presented so far, it does not follow that sender-receiver teleosemantics must attribute

signalhood to protease.

Second, when we investigate the mechanical details of protease, we find a more serious

challenge to Neander’s claim. Neander considers the gut (i.e. the small intestine) to be the

receiver of the protease signal. However, the way a protease such as trypsin works suggests

that the system does not have the right kind of sender-receiver structure. Trypsin catalyses the

process by which proteins are broken down. It does this within the small intestine after being

transported there from the pancreas. It does not have a causal effect on the small intestine

that then prompts the intestine itself (or some part of it) to catalyse the reaction. The intestine

is simply the place where the reaction occurs, because that is where the relevant proteins are

found during digestion.

It is worth noting that my response would not be plausible if the reasons why sender-

receiver teleosemantics rejects protease as a paradigmatic signal were different than the rea-

sons why biologists reject it as such. For then it would be a lucky accident that teleosemantics

gets the right answer, rather than as a result of correctly describing the concept (or kind) ‘sig-

nal’. In this case, they are the same reasons: a protease such as trypsin is not treated as a

signal because the proteins on which it acts are taken to be resources for an organism rather

than constitutive parts of it. If they were the latter, proteins would perhaps be ascribed the

function of breaking down into smaller parts; consequently, catalysis would perhaps be de-

scribed as the triggering of this function; consequently, trypsin would perhaps be considered

a signal molecule. It is because the molecules whose breakdown is catalysed by enzymes

are not considered functional parts of an organism that enzymes are not considered interme-

diaries, and are therefore not even putative signals.
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There is a problem with the response I have just offered to Neander’s objection. The

protease system is even more complex than I have so far allowed. Trypsin is stored in the

pancreas as trypsinogen, an inactive form that protects the pancreatic tissue itself from the

effects of trypsin. Trypsinogen is transported to the duodenum (part of the small intestine)

in this inactive form. There, an enzyme called enteropeptidase is secreted, which converts

tripsinogen into trypsin. So there is a sense in which a causal interaction between the in-

termediary (trypsinogen) and the receiver (enteropeptidase, broadly construed as part of the

gut) effects a response (trypsin production). We might squeeze this into a sender-receiver

template after all.

However, the receiver’s act in this case is the production of an enzyme (trypsin) from

materials already present in the putative signal (trypsinogen). Here is where the paradigm/-

marginal structure I have been arguing for kicks in. Most or all of the material required to

produce the response is already present in the putative signal. It is therefore not a paradig-

matic signal, because it scores very low on the dimension of resource separation.

Again, it is not a lucky accident that sender-receiver teleosemantics gets the right result

once we look at the case in more detail. The hypercube analysis captures those features of

causal intermediaries that biologists consider significant when ascribing signalhood. Sup-

pose the molecule transported from the pancreas to the duodenum were not trypsinogen (i.e.

not a molecule that contained the constituents of trypsin), but a molecule that stimulated the

production of trypsin by the duodenum. Then, I submit, biologists would consider that trans-

ported molecule a signal, and the pancreas and the gut would have sender-receiver structure

as required. Teleosemantics would assign content equivalent to ‘there is protein in the gut;

produce trypsin!’ to the transported molecule, in agreement with the biologists’ own account.
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Teleosemantics, together with the hypercube analysis, captures significant aspects of biolo-

gists’ practice of ascribing signals. That is why it gets the right answer in these actual and

hypothetical cases.

1.6 Why teleosemantics?

There are plenty of philosophical accounts of meaning. What makes sender-receiver teleose-

mantics uniquely well-suited to interpreting biological communication?

Ideally I would argue that teleosemantics is the best account of meaning available, but

that is not the focus of the present work. Strictly, this thesis is about applying communication

theory in biology. Teleosemantics is an interpretive framework that resolves philosophical

problems relating to that application. There may well be other frameworks that resolve these

problems as powerfully. However, I find it very plausible that a comparable result would be

forced to include function as part of the analysis. The best account will be a teleosemantic

theory of one sort or another. With that in mind, I will restrain myself to comments in favour

of Millikan’s theory over other versions of teleosemantics.

Millikan’s theory captures correctness conditions within the central model itself (chapter

3). This allows us to starkly demonstrate the relevance of communication theory for expla-

nations of signalling behaviour. Two alternative versions of teleosemantics, due to Neander

(2017) and Shea (2018), put distance between semantic content, characterised by correctness

conditions, and the concepts and tools of communication theory.

Neander offers her own definition of information, with the hope of using it to construct

a workable notion of semantic content for cognitive science. Neander (2017, p. 142) defines
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information as follows: “one event carries information about another if the second causes the

first” (emphasis removed). On the face of it, this definition looks simultaneously too liberal

and too restrictive. It is too liberal because A can cause B without B carrying information

about A: there may be other causes of B that make it impossible to infer anything about

A. It is too restrictive because it excludes exploitable correlations: non-causal statistical

relationships that persist for good reason. It also violates symmetry: typically, definitions of

information allow that if A carries information about B then B carries information about A.24

Furthermore, Neander gives short shrift to communication theory. In describing the cen-

tral model, she says:

Shannon offers no analysis of the relation in virtue of which a sign carries in-
formation about a state of affairs (his interest was in other issues). And, while
information theory in the tradition of Shannon’s work remains an important re-
source for the mind and brain sciences, it is an open question to what extent the
notion of information used in these sciences – in talk of the flow of information
in the brain and the like – is constrained by this tradition.

Neander (2017, p. 7)

To the contrary: biology, and by extension cognitive science, should be directly constrained

by that tradition. Coding strategies are precisely concerned with how signals correspond to

signifieds. Indeed, coding strategies are arguably more useful to communications engineers

than the theorems that made Shannon famous. The source coding theorem, for example,

guarantees that an optimal code exists in principle for arbitrarily long messages (see appendix

A). But knowing which code to use, given that messages are not arbitrarily long in practice, is

24Neander (2017, n. 19, p. 266) considers this problem and suggests introducing two kinds of information
(one for each temporal direction); however, she later raises further problems with this suggestion that remain
unresolved (Neander, 2017, n. 28, p. 268).
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much more useful. And, as I argue in chapter 3, knowing which code to use just is knowing

how to imbue a signal with the information it carries about the source.

Next, consider Shea’s varitel semantics (Shea, 2018). Shea draws on the familiar mathe-

matical definition of information. But, like Neander, he bemoans the limitations of commu-

nication theory:

The ‘information’ of information-processing psychology is a matter of correct-
ness conditions or satisfaction conditions, something richer than the correla-
tional information of information theory. [...] Correlational information may
well be an ingredient in a theory of content [...] but even the sophisticated tools
of mathematical information theory are not enough, without other ingredients,
to capture the core explanatory difference between correct representation and
misrepresentation.

Shea (2018, pp. 12–13)

Along with Martínez (2019, 2020) I argue that this claim is slightly too quick. There is an

explanatorily relevant notion of failure in engineering systems, described by the mathematics

of communication theory, that corresponds with the teleosemantic definition of misrepresen-

tation (see chapter 3). The formal work that best illustrates this point is a relatively obscure

corner of the mathematics called rate-distortion theory. Sender-receiver teleosemantics gives

clues to the proper interpretation of these unfamiliar results (see chapter 6).

In sum, by providing an abstract characterisation of signalling that captures the central

model of communication theory, Millikan’s teleosemantics paves the way for applications of

communication-theoretic tools and concepts in biology. Other versions of teleosemantics ex-

plicitly disavow that the connection is as tight as I claim. Chapter 3 offers further arguments

in support of my position.
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1.7 Conclusion

Interactions between biological agents can be conceived as belonging to a multidimensional

space. Paradigmatic signals are interactions that take place within a particular region of the

relevant hypercube. For signals of this kind, informational measurements can be made by

borrowing models from communication theory. Sender-receiver teleosemantics is particu-

larly well suited to interpreting these models and measurements.



Chapter 2

Measuring information in a biological signal

Parts of this chapter are adapted from Mann (2018).

2.1 Introduction

This chapter establishes grounds on which attributions of information in animal signals are

warranted. Informational language is most appropriate when signalling behavior is the result

of coadaptation. Several lines of argument are presented in favor of the use of information

theory for studying certain biological communication systems. Throughout, a positive pro-

posal is advanced for the interpretation of information in biological signals. Information is

a measure of the accuracy with which a shared goal is achieved. In our case study, which

focuses on the waggle dance of the honeybee Apis mellifera, the goal is finding food. Insofar

as receiver bees have a greater probability of finding food after having followed a dance,

information is transmitted by dancing bees. It is this notion of transmission that constitutes

grounds for application of the information concept, and related mathematical tools, in studies

of biological signalling.

The communication theory approach is a special case that emerges as sender and receiver

interests become aligned. These considerations give grounds for optimism about the use of

informational concepts and measurements in behavioral ecology and biology more broadly.

Paradigmatic cases of information transmission are those in which the form of the signal is

62
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designed by coadaptation of sender and receiver. In these cases, signal structure can appro-

priately described in terms of a ‘code’.

The chapter is structured as follows. In section 2.2 I describe a classic study of the hon-

eybee waggle dance in informational terms. I explain and interpret the model and equations

used in that study, as well as making explicit the assumptions required for those interpreta-

tions to hold. In section 2.3 I respond to two preliminary objections to the model. I show that

both are based on mathematical and/or interpretive mistakes. In section 2.4 I discuss a more

general family of objections to the use of informational concepts in behavioural ecology.

These objections cannot be sustained for all instances of animal communication, because the

honeybee case shows that well-defined notions of information and encoding are applicable in

at least one case. However, the informational perspective crucially rests on an assumption of

cooperation between organisms. The question what becomes of information when interests

diverge is picked up in chapter 7.

2.2 Measuring information in a biological signal
2.2.1 The honeybee waggle dance

“The” honeybee waggle dance is rather a family of communicative behaviours performed

by all seven species of honeybee (Beekman et al., 2015, p. 1). Six species are native to

South East Asia, but the seventh – the Western honeybee (Apis mellifera) – is widespread

in Europe, Africa, and Asia and has been domesticated since antiquity, making it uniquely

amenable to scientific study. Western honeybees perform the waggle dance when foraging

and searching for new nest sites. The works discussed here focus on A. mellifera foraging at
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artificial feeders and performing the waggle dance on a vertical surface inside the hive (von

Frisch, 1950, pp. 76–7). The term “honeybee waggle dance” refers to this context. See the

case study for details (p. 64).

The waggle dance

When individual bees discover a valuable food source, it is often beneficial to recruit

nestmates as soon as possible. Competition from other foragers, and the brief duration

of flowering, set important time constraints. A bee that finds a good flower patch will

often try to direct available workers to that location. Indicating direction and distance

on the vertical inner surface of a pitch-black hive is no mean feat. Bees nonetheless

succeed by performing repeated patterns of figure-eight movement whose detectable

features – orientation and duration – correspond to the direction and distance of the

food source (see figure 2.1). This is the waggle dance, so called because the bee’s

body vibrates during the straight portion of the figure-eight run with a frequency cor-

responding to the quality of food discovered. Interested recruits physically follow

the dancer to familiarize themselves with the direction and distance indicated, before

flying off to locate the relevant food patch.

It is unclear how useful the dance is across different contexts, and the purpose for

which it originally evolved. Several lines of evidence count in favour of nest site

selection as the significant factor (Beekman et al., 2008; I’Anson Price and Grüter,

2015). It is relatively difficult for cavity-nesting species to find viable housing. Flow-

ers and trees actively advertise their wares; small gaps in rocks or bark do not. In

addition, nest site selection takes place under extreme time pressure, typically when
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a new swarm has left its original colony and is temporarily exposed to the elements

and predators. Foraging, in contrast, rewards individual search handsomely. Only in

exceptional circumstances does it demand social coordination.

These arguments raise general questions about the benefits of worker recruitment over

individual search (Grüter et al., 2008; Grüter and Ratnieks, 2011; I’Anson Price and

Grüter, 2015) (Schürch et al., 2016, pp. 6–15). Many factors affect the relative utility

of the two strategies, and it is not yet clear which cues bees use in deciding to switch

(I’Anson Price et al., 2019). Since recent work on insect cognition reveals that nom-

inally sophisticated behaviour can be reliably achieved with modest brains (Cabirol

et al., 2018; Plath et al., 2017), it is difficult to confidently infer cognitive explana-

tions for individual and social behaviour. All these considerations are salient for the

general question of colony intelligence as a form of emergent behaviour. For example,

a counterpart to the waggle dance is the ‘stop signal’, when bees physically butt scouts

and cause them to cease dancing (Schürch et al., 2016, pp. 54–9). The interplay of

positive and negative feedback through combined dances and stop signals is thought

to ground sophisticated decision-making capacities at the level of the entire colony.

Informally, the dance is a signal about the location of food. behavioural ecologists advert

to the correspondence between dance and food when explaining foraging behaviour of hive

recruits (von Frisch, 1950, p. 78) (Riley et al., 2005, p. 205) (Biesmeijer and Seeley, 2005,

p. 133) (Beekman et al., 2015, p. 1). Indeed, much work on honeybees after von Frisch was

geared towards demonstrating that these explanations were correct (Gould, 1975). The rules

of the dance language play a significant role in explanations of successful behaviour, and
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Figure 2.1: How the waggle dance indicates the direction of food. Caption from the original
image: “A waggle run oriented 45° to the right of ‘up’ on the vertical comb (A) indicates a
food source 45° to the right of the direction of the sun outside the hive (B). The abdomen of
the dancer appears blurred because of the rapid motion from side to side. (Figure design: J.
Tautz and M. Kleinhenz, Beegroup Würzburg.)” (Chittka, 2004, p. 898)
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their discovery helped win Karl von Frisch the Nobel Prize in 1973 (Karolinska Institutet,

1973). That recruits are capable of finding food at a rate better than chance having followed

the relevant dance is an established fact. In what follows, we shall assume that recruits who

follow the dance find the indicated food source at a rate better than chance and that the dance

evolved for this reason.

2.2.2 Measuring information transmitted by the dance

Soon after the advent of communication theory in the late 1940s, Haldane and Spurway

(1954) investigated the informational properties of the waggle dance. I will now describe the

aims, methods, and conclusions of that study.

Haldane and Spurway wanted to demonstrate the possibility of deriving informational

properties from statistical data. They used honeybee communication as an example because

von Frisch had already published the relevant statistics (von Frisch, 1948; von Frisch, 1950,

1952). By 1954, communication theory offered a new perspective on this data from an

engineering viewpoint. At the heart of the motivation for the study was the possibility of

comparison with other animals. It was hoped that the way information is measured, and

the generality of the units of information, might allow for the magnitude of information

transmission to be compared between communication systems. Indeed, soon after the study

was published Wilson (1962) obtained similar statistical and informational data for fire ants,

explicitly comparing his results with those of the earlier work.

Although contemporary work on biological information typically begins by citing Shan-

non (1948b,c) or Shannon and Weaver (1949), Haldane and Spurway took their leave from

Norbert Wiener’s Cybernetics (Wiener, 1948). Wiener’s approach emphasizes intra-system
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control over inter-system communication. Since a honeybee colony may fruitfully be con-

strued as a more or less unified entity with unified goals (at least with regard to foraging), it

is appropriate to take a cybernetical approach to its behaviour. Haldane and Wiener also hap-

pened to know each other personally, which may have contributed to the choice (Dronamraju,

2017, pp. 259-60).

Haldane and Spurway (1954, p. 255) use just one equation to measure information. It is

a formula that converts two pieces of statistical data (representing receiver behaviour) into a

term for information transmitted by senders. The conversion works as follows. Suppose a

group of receivers are about to embark on a foraging run. In the absence of experience they

will tend to spread themselves evenly around the foraging domain. Their spatial distribution

is represented by a uniform probability distribution (figure 2.2A). This is the first piece of

statistical data, generated by the modelling assumption that bees without information forage

randomly. Note that this is a continuous distribution. The foraging domain has not been seg-

mented into discrete ‘cells’, each with some nonzero probability of being arrived at. Rather,

any given region – of any size – has a nonzero probability of being visited. Now consider

how receiver bees are distributed when they react to a dance. Instead of dispersing randomly

throughout the domain, they all fly in roughly the same direction (figure 2.2B). This is the

second piece of statistical data, generated by the observed distribution of recruits which is as-

sumed to be Gaussian. This too is a continuous function. The ‘most popular’ direction is the

direction of food, but some receiver bees will be a little inaccurate. The conversion equation

translates these two distributions into a quantity of information, which can be interpreted as

the information provided by senders about the direction of food. It is calculated as follows.

The conversion equation is derived from two formulas taken from Shannon (1948c).
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Figure 2.2: How directional information in the waggle dance is measured. A Without
experience, bees are expected to disperse randomly (small dots) about the hive (black disc).
This is represented by a uniform distribution (circle) around the hive. The same distribution
in Cartesian coordinates is also presented. B. After receiving a signal, receiver bees are much
more biased toward the direction indicated by the dance. This situation is represented as a
Gaussian distribution. Information transmission is measured by subtracting the entropy of
(B) from the entropy of (A) (see equation (2.2) for details). Although individual entropies
are quantified relative to the coordinate system (here 360 degrees per circle), transmission
rate is not relativised in this way (Shannon, 1948c, p. 631).
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These formulas give the entropy of a Gaussian distribution (Shannon, 1948c, p. 630) and

the transmission rate of a continuous channel (Shannon, 1948c, p. 637). Haldane and Spur-

way combine the two into a single equation giving the transmission rate of a continuous

channel when the source entropy is uniform and the conditional entropy is Gaussian:

Transmission rate = H(X)−H(X |Y ) (2.1)

= log2 360°︸      ︷︷      ︸
Prior uncertainty

(figure 2.2A)

− log2

√
2πeσ°︸            ︷︷            ︸

Posterior uncertainty
(figure 2.2B)

(2.2)

The most perspicuous form of this equation is due to Wilson (1962, Appendix, p. 156):

Transmission rate = log2
360°
σ°

− log2

√
2πe (2.3)

Here, σ represents the standard deviation of the Gaussian distribution. Informally, it mea-

sures the ‘spread’ of receiver bees about the food source. Granted that receivers can be rep-

resented by a Gaussian distribution, σ is the only statistic required to calculate information

rate.1

An equivalent way of conceiving the situation is to take the uniform distribution as a

‘prior’ and the Gaussian as a ‘posterior’. Before the dance, receiver bees are maximally

uncertain about the location of food, hence the prior distribution is uniform. After the dance,

the receiver bees’ uncertainty has decreased. The magnitude of the decrease in uncertainty

is a relation between the Gaussian and uniform distributions.2

1The appropriate measure for the Gaussian distribution is presented in Shannon and Weaver (1949, p. 89).
Haldane and Spurway cite Wiener (1948, p. 62) who provides a general formulation of information in a contin-
uous distribution and does not appear to discuss the Gaussian case explicitly. For a derivation (and explanation)
of the equation used by Haldane and Spurway (1954, p. 255) see Wilson (1962, Appendix).

2In fact the von Mises distribution would have been more appropriate (Schürch and Ratnieks, 2015). The
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By this method, Haldane and Spurway derive a quantity of information about the direc-

tion in which food can be found. Substituting the standard deviation of 14.7° (p. 251) into

equation (2.3), they conclude that each recruit receives on average 2.5 bits (p. 278) of infor-

mation about the direction of food. It is worth pointing out that this analysis holds regardless

of facts about the cognitive powers of individual bees. On the cybernetic interpretation, in-

formation is a measure of how behavioural precision contributes to system goals. Cognitive

sophistication can be included or omitted from models of communication, without bearing

on the presence of information in signalling systems. The same is true of sender-receiver

models in general (Skyrms, 2010, p. 44).

Why is this method justified in the case of honeybees?3 If a colony is an entity with

unified evolutionary goals, it is plausible to think senders obtain a payoff for receiver success.

Since receiver success increases when information is transmitted, the dance evolves because

of the information it provides. In other words, when ‘information’ is construed in terms

of accuracy, transmission rate is selected for. Nature plausibly selects for accuracy under

the circumstances bee colonies have historically found themselves in. On this interpretation,

selection has led to increased information transmission.

Furthermore, this line of thought suggests an explanation for increased articulation in the

waggle dance over phylogenetically earlier kinds of dance. If articulation supports greater

information transmission, and transmission rate is selected for, then articulation can be se-

lected for its informational consequences. Of course, adaptation is always subject to con-

straints, and the quantity of information transmitted cannot increase indefinitely (Preece and

Gaussian is an acceptable approximation.
3Gallistel (2020) offers a more psychologically oriented answer to this question.
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Beekman, 2014). Nonetheless, it is justifiably claimed that the benefits of foraging accu-

racy historically underpinned selection for greater information transmission in the honeybee

waggle dance.

In sum, Haldane and Spurway established that informational measures can be derived

from statistical data. They justified their use of a measure taken from communication theory

by adopting a cybernetic perspective on honeybee colonies. To the extent that a colony’s

communicative goals are unified, this approach is justified. Since 1954 more work in a

similar vein has appeared (Beekman et al., 2015; Riley et al., 2005; Schürch and Ratnieks,

2015). Regardless of differing results, what matters here is whether Haldane and Spurway’s

model was a good one and whether their interpretation of information was valid. I have

argued that the answer to both of these questions is yes. The next section responds to two

objections.

2.3 Initial objections to Haldane and Spurway

Skepticism of the validity of these results continues (Pfeifer, 2006; Sarkar, 2013). Even

optimistic scholars, as well as those on the fence, cite Pfeifer (2006) as having presented

technical challenges to the use of information theory in biology (Reading, 2011, p.149 fn.6)

(Stegmann, 2013b, p. 143) (Wiley, 2013a, p. 118). I aim to show that although there surely

will be technical and methodological hurdles, they are not the ones presented by these objec-

tions.



73 2.3. Initial objections to Haldane and Spurway

2.3.1 Objection 1: Arbitrary Coordinate Systems

In this section I show how the bee dance is both iconic and continuous and how signals of this

kind contain measurable information. This undercuts one skeptical argument against the use

of information theory for animal signals in general, and the bee dance in particular, namely

that the models we employ to quantify signal information are somehow arbitrary. Discrete

models appear to be arbitrary, but continuous models do not suffer from the same defect.

The skeptical argument due to Pfeifer (2006) and repeated by Sarkar (2013, §7.3) runs

as follows. Honeybee signals indicate, among other things, the direction of a food source

relative to the hive. The quantity of information about direction in a signal depends on how

precise the signal is. When modeling bee signals, therefore, the amount of information we

will obtain depends on how finely we carve up ‘direction space.’ But we have no a priori

guidance as to how finely to carve up the space. Different divisions will give different mea-

sures of information, but none will have priority. Sarkar suggests we could test for individual

bees’ perceptual acuity, and divide the space into segments of a size roughly discriminable

by the bees themselves. He claims Haldane and Spurway did not do this, and that even if

they had, the placement of these individual direction-segments would have been arbitrary.

By shifting them a half-step clockwise, we obtain a totally new division of direction space,

which will transform our statistical data into different informational measurements. Since

no carving of the space is privileged, there can be no privileged conversion of statistical

data into informational quantities. As a result, information measurements are to some extent

arbitrary, and cannot be relevant for selective explanation.

To make the objection clearer, consider one of Pfeifer’s models (Pfeifer, 2006, p. 325).
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Figure 2.3: Signal probabilities for model EFG.

Suppose there are three types of bee, E, F and G.4 They each need to signal the location of

food, and each signal indicates a direction around a circle centered on the nest. Further, they

differ in the probabilities of signaling in each direction, as per figure 2.3.

Described this way, each type transmits a certain amount of information on average:

• E: 1.971 bits/signal

• F: 1.971 bits/signal

• G: 1.985 bits/signal

We see that G transmits more than E and F on average. However, if response behavior

is distributed uniformly about the segments, we can individuate signals by cardinal points

instead, as per figure 2.4.

Described this alternative way, the information measurements are:

• E: 2 bits/signal

• F: 1.985 bits/signal

4The original example mentioned ants. Here and below I substitute bees without loss of generality. I retain
the alphabetical labeling of types for ease of comparison with Pfeifer’s article. Model ABCD is not relevant to
the argument and has been omitted.
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Figure 2.4: Signal probabilities for model EFG, alternative description.

• G: 1.996 bits/signal5

Notice that the order of greater/lesser information transmission has changed. Now E trans-

mits more than G types, followed by F types last. The subsequent argument is fairly obvious.

If signal individuation is down to the modeler’s discretion, and information measures are

sensitive to individuation, then information transmission is model-relative.

Though there are many ways for depictions of the world to be relativized to the model

used to express them, and not all render hypotheses inconsequential, the kind of relativity

implied by this objection is problematic. A selective hypothesis is supposed to pick out a

property and state why it persists in the lineage. In this case, the property is the quantity of

information contained within signals. If that quantity cannot be said to be greater or lesser

except relative to the model chosen to represent the signal, we need independent grounds on

which to choose one model over another. Pfeifer claims we have no such grounds since no

carving of the space is privileged: “if different ways of carving signals result in different or-

derings of the measurements, then it is unclear how the measure could be used in explaining

5A typo in the published version of Pfeifer (2006, p. 325) erroneously cites this value as 1.96 bits/signal.
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how information transmission is selected for” (Pfeifer, 2006, p. 325, col.1). As a result, no

selective hypothesis adverting to information transmission is recommended over any other.

Response to Objection 1

There are two ways to read the objection. I will argue it fails in either case. On the first

reading, it turns out recarving the space does not alter the informational measurement. The

objection fails on mathematical grounds. On the second reading, recarving the space alters

the measurement as required, but some carvings will more accurately match the facts than

others. Selective hypotheses adverting to informational measurements are then verifiable,

establishing the required link between model and reality. The objection fails on both readings.

Moreover, the dilemma is not accidental. It is a reflection of Pfeifer’s assumption that signals

are discrete and indicate direction symbolically. In fact, signals in this system are continuous

and indicate direction iconically.

Consider the first reading. The objection rests on statistical differences between the two

carvings. However, the second partitioning does not seem to have the entropy assumed by

the second informational calculation. If the distribution of insects across each partition in

the first carving is uniform, the distributions in the second will not be uniform. To see

this, consider figure 2.5A. Blue solid lines represent insects observed in each segment as

a proportion of total insects observed. These densities would not change even after the

partitions are shifted, so the new distributions are nonuniform lines with a step-change in the

middle of each partition. The information rate derived from such stepped distributions is the

same as that calculated from the original partitioning. As a result, the proposed calculation

is incorrect and does not have the consequence that information measurements are model-
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Figure 2.5: Two ways to read objection 1. In either case, the objection fails. Blue solid
lines represent insects observed in each segment as a proportion of total insects observed.
A. The different carvings of the space entail the same informational results (because the
blue lines do not change). The objection is then incorrect on mathematical grounds. B. The
different carvings of the space entail different informational results (because the blue lines
are different). But these different carvings now entail different falsifiable assumptions. The
objection fails because the models’ assumptions are verifiable, not arbitrary in the manner
required for the objection to go through.

relative.

There is another way to read the objection, however. Suppose the scientists were faced

with a choice of partition to use while conducting the experiment. They can set up their four

detectors in either of the two configurations depicted by model EFG. Due to restrictions

in the precision of the detectors, they are forced to assume a uniform distribution within

each segment in either case (figure 2.5B). Given these conditions, it is true that a scientist

who opts for the first configuration would derive different informational measurements than
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one who chooses the second. Different selective hypotheses result, but one hypothesis will

be better. One carving entails more accurate modeling assumptions, since the regions it

describes in fact have a more uniform distribution of insects passing through. Alternatively,

both carvings could be equally wrong. This is importantly different from being arbitrary,

since there will be some other carving that is better than both. In any event, a more precise

detection method would capture more fine-grained insect movements, giving rise to more

accurate informational calculations.

The objection fails on both readings, a dilemma that brings out a key difference between

model EFG and the model used by Haldane and Spurway. The latter employed a discrete

approximation of a continuous model, using an equation of continuous rather than discrete

entropy. Although the statistic they plugged into the equation was derived from an experi-

ment using discrete partitions, it is a different way of modeling the situation than that typified

by EFG. Discrete approximations to continuous models become more accurate as they be-

come more fine-grained (Schürch and Ratnieks, 2015, Fig. 1, p. 3). If the insects of model

EFG were observed again using detectors capable of distinguishing 8, 16, or 32 partitions,

the resulting information measurement would become more precise. It would not increase

indefinitely, as per Pfeifer’s approach.

To reiterate, Pfeifer introduces a situation in which signals are discrete and represent

directions symbolically. Her objection is then that we cannot possibly come to know how

symbols and directions correspond, and any choice destroys the link between model and

reality. In contrast, the biologists make the reasonable and widely accepted assumption that

bee signals are continuous and represent directions iconically. Once a continuous model is

employed to represent a signaling system, discrete partitions can be overlaid to retrieve data.
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The more fine-grained these partitions, the more accurately the data captures the continuous

model lying underneath.

A different but equally mistaken conclusion might be drawn from the equation used to

convert statistical into informational data. To measure the accuracy of the waggle dance,

Haldane and Spurway took a circle centered on the nest and measured the proportion of that

circle covered by insects that had received a signal (recall figure 2.2 and equation 2.3). A

smaller circle proportion covered by food-seeking receivers means more accurate communi-

cation, hence a greater amount of information transferred. Pfeifer objects to the appearance

of the number 360 in equation (2.3):

It is assumed in both cases that there are 360 possible messages about direction
corresponding to the 360 degrees surrounding the nests of the ants or bees [but]
it is not clear why they should be divided into 360 different possible signals, as
opposed to 180, 720, or some other number.

Pfeifer (2006, p. 342)

It is easy to see the problem if the objection hits its mark. The division of circles into 360

equal segments is a human convention. If it is used as the basis of an information calculation,

any derived quantities must be arbitrary as well. Conventional measurements cannot enter

into explanations that pertain to natural selection, since nature is blind to our conventions.

Consequently the use of the number 360 in equation (2.3) is inappropriate. Again, citing

Pfeifer, Sarkar reiterates the objection (Sarkar, 2013, p. 196).

However, the interpretation of equation (2.3) that underpins this argument is incorrect.

The number 360 is employed only as a convenience for the reader. The equations in which

it appears are designed to calculate the proportion of the circle covered by outgoing insects.

Proportion is blind to the units used to calculate it since dimensions cancel in the division.
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Figure 2.6: The proportion of a circle covered by receiver insects can be calculated using
any units, whether degrees, radians, or as a fraction of a turn. In equation 2.4, σ (Greek letter
sigma) represents the angle of the shaded segment. Hence the first logarithm in equation 2.3
represents the length of an arc as a proportion of the circumference of the circle, which is
not relative to the conventional measure of 360 degrees.

Indeed, Haldane and Spurway first represent the full angle in radians as 2π before converting

it to 360 degrees for expository clarity (Haldane and Spurway, 1954, p. 255). Unfortunately

they use the same symbol, σ , in both cases, making it less than obvious that the units have

changed from radians to degrees. Equation (2.4) and figure 2.6 demonstrate the equivalence

of these different measures.

Circle proportion =
σdegrees

360
=

σradians

2π
=

σturn

1
(2.4)

As a result the use of the number 360 does not indicate an assumption of 360 messages. It is

true, however, that the precision of the calculation increases as the precision of σ increases.

Pfeifer raises a related complaint that the statistical data available to Haldane and Spurway

are given in 15 degree increments, which is too coarse-grained to provide a reliable measure.

However, the biologists take this into account, and the error margins they give are consistent

with their estimations. As per Schürch and Ratnieks (2015, p. 3), more precise measurements
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would lead to more accurate calculations. In sum, this objection is not sustained.

Overall then, the accusation of arbitrariness toward coordinate systems used to measure

the directional component of the bee dance cannot be upheld. Continuous models are avail-

able for use where appropriate. Haldane and Spurway employed such a model. Though the

literature on sender-receiver models emphasizes discrete signal sets, this is not a necessary

feature of the framework. Plausibly, many signals in nature can be profitably investigated

with continuous models. Discrete models are often best construed as approximations to the

underlying continuous representation. In the next section I deal with a second major objec-

tion to the use of information theory in the study of biological communication.

2.3.2 Objection 2: Precision and Accuracy

In this section I show how quantifying information in signals is not just a case of quantifying

the precision of receiver behavior. One route to skepticism of the utility of information

theory in biology is based on the claim that behavioral precision does not entail accuracy,

hence precision alone entails nothing about fitness. I show that information measurements,

far from being solely a measure of precision, are a quantification of accuracy. Accuracy,

which in this case translates into foraging efficiency, is clearly relevant for fitness.

The objection, again due to Pfeifer, runs as follows. The biologists used statistical data in

their calculations, and the statistic they employed is the spatial distribution of signal receivers.

A greater proportion of receivers clustered closer to the target entails a greater quantity of

information transmitted. By measuring the difference between this more ‘focused’ distri-

bution, and the otherwise random distribution of receivers around the circle, the biologists

quantify information. Pfeifer complains that mere increased precision of receiver behavior
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might not be selectively relevant. Suppose bees clustered closely together in a region that

lacked food. Their behavior would be focused in a statistical sense, yet would not contribute

to fitness. Behavior can be highly specific yet selectively neutral, or even detrimental. To

support the objection Pfeifer presents model HIJ.

Suppose there are three kinds of bee, H, I and J, each of which can signal to the east and

west and do so with equal probability. Suppose H types always go east when signaled east

and west when signaled west, but I types respond improperly by going west when signaled

east and east when signaled west. In addition, J types go east with probability 0.7 when

signaled east, otherwise west, and vice versa. The problem highlighted by this model is

that H and I types transmit the same amount of information, namely 1 bit/signal, whereas J

types transmit much less, around 0.119 bits/signal. Despite this, we would expect J types to

perform better than I types because they successfully obtain food more often on average. In

consequence, it is unclear how information transmission can have relevance for fitness.

2.3.3 Response to Objection 2

We can respond to this objection by noting that the increased focus of the posterior distribu-

tion is centered on a target that has selective relevance, such as food. Wilson (1962) confirms

that this assumption is encapsulated by the model. The parameter used to measure informa-

tion, σd , is directly relevant for accuracy:

Note that σd refers to dispersion of following workers with reference to the ac-
tual target and hence is a direct measure of the accuracy (content) of information
transmission. The honeybee data of von Frisch and his co-workers are of this
nature.

Wilson (1962, Appendix, p. 157, col. 1)
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Insofar as receiver bees have a greater probability of finding food after having watched

a dance, information is transmitted by dancing bees. It is this notion of transmission that

constitutes grounds for application of the information concept, and related mathematical

tools, in studies of biological signaling.

What about model HIJ? It seems to show that biologists might inadvertently attribute a

high rate of information transmission to a colony that fails to put its signals to good use. As a

claim about methodology, this is implausible. If it is assumed that signals used by type I are

indeed food signals, it would be mysterious why receivers behave so aberrantly. Where the

colony’s goal is finding food, signals generally increase the probability of doing so. When

they do not, they are selected against. I-type signals could hardly be regarded as signals

about food since the probability of finding food is not raised when they are sent.

Like any piece of behavior, a signal cannot be selected for if it does not contribute to

fitness. By hypothesis I-type signals do not contribute to fitness, therefore they cannot be

selected for. As a result they would not contribute to a behavioral ecologist’s selective hy-

pothesis; they would be simply anomalous.

To reiterate, the biologists’ models embody a crucial assumption: that the target has se-

lective relevance. In this section, two mathematical objections have been overturned. I now

turn to broader considerations about the use of informational concepts in animal communi-

cation theory.
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2.4 Are information and meaning appropriate

concepts for animal signals?

The most pressing challenge to the realist about biological information is the lack of a clear

definition of that concept in behavioural ecology. A little background is required to motivate

this objection.

2.4.1 Scepticism about information in behavioural ecology

By the late 1970s, animal signals were typically defined in terms of information. Signal evo-

lution was thought to mainly proceed via ritualisation of cues. Since ritualisation is a process

of coadaptation, signals were viewed as primarily cooperative, despite the possibility of de-

ception and exploitation. In the face of this orthodoxy, Dawkins and Krebs (1978) offered a

different approach. They proposed that communication be defined as one animal controlling

another, typically by exploiting perceptual mechanisms designed for other purposes. Due

to the individualistic operation of natural selection, cooperation and coadaptation are rare

(Dawkins and Krebs, 1978, p. 289). Consequently, we should adopt an individualistic ac-

count of communication, one that places the sender front and centre.

More recently, in a series of individual and joint papers, Michael J. Owren, Drew Ren-

dall, and Michael J. Ryan (hereafter ORR) present significant challenges to the use of in-

formational concepts in animal communication studies (Owren et al., 2010; Rendall and

Owren, 2013; Rendall et al., 2009; Ryan, 2013). Information, they claim, is an insubstantial

metaphor that cannot do explanatory work and often misleads us as to the nature of signalling

behaviour. Several behavioural ecology texts go so far as to define communication in terms
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of information, without ever fully explicating the latter (see Rendall et al. (2009, Table 1)

for examples). Instead, ORR propose a definition of signalling akin to that of Dawkins and

Krebs, in terms of the influence one animal exerts over another.6 Further scepticism is ad-

vanced by Sarkar (2013), who discusses the honeybee waggle dance along with wider issues

of animal signalling. Sarkar claims different informational concepts have been conflated in

the literature, and that as a result informational measurements do not capture the quantities

claimed by those who employ them.

ORR point out that many authors use the quasi-technical term ‘information’ in an un-

constrained manner (Rendall et al., 2009, Table 2) (Rendall and Owren, 2013, Table 6.1).

As a result those authors often switch between different concepts masquerading under the

same label, or gesture at unsubstantiated explanations. In particular, authors often invoke

‘information’ in a technical sense that quantifies correlations between events. This, ORR

claim, is Shannon information, which cannot be central to definitions of signalling because

it can be used to describe any correlated events, biological or otherwise. Sarkar (2013) too

distinguishes Shannon information (he calls it MTC-information for “mathematical theory

of communication”) from semantic information, and repeats ORR’s contention that theorists

often conflate the two. The distinction has also been flagged as between “syntactic” and

“semantic” information, the former being agnostic about the meaning of signals or symbols

whose transmission it quantifies (Morton and Coss, 2013, p. 211 & p. 229). Since invoca-

tions of information are inconsistent, and nobody has provided a resolute definition, it seems

6Stegmann’s edited volume (Stegmann, 2013a) characterises the debate as between information-based
and influence-based definitions. However, as pointed out by several entries in that volume, information and
influence do not form a strict dichotomy. Here I am primarily concerned with establishing grounds for the
attribution of information, so I make little mention of influence-based definitions.
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better to dispense with the notion.

A similar fate befalls the concept of encoding. Animal signals are sometimes said to

carry information in a form that a receiver must decode in order to obtain. But it is rarely

made explicit what is meant by an encoded message in a biological setting. By failing to

specify what is being invoked, theorists draw on a “vague, elastic and insubstantial” concept

(Owren et al., 2010, p. 758) that cannot do the explanatory work required. As with “infor-

mation,” then, talk of “encoding” does more harm than good. Both can be discarded without

losing explanatory power. Rendall and Owren (2013, pp. 171–2) make an even stronger

claim: “Ultimately, notions such as information and coding cannot be cashed out in terms of

standard concepts used in biological and evolutionary theory.”

2.4.2 Responding to information scepticism

One thing worth mentioning here is that ORR’s wider aim, to critique anthropocentrism

and linguistic metaphors in animal signalling theory, is laudable. Animal communication

should indeed be understood on its own terms, and should not be treated as a pale imitation

of human natural language. It is interesting, however, that ORR consider the use of infor-

mation theory to fall into this anthropocentric paradigm, since several theorists present the

story precisely the other way round. The “conduit metaphor” that ORR discuss is a term

introduced by Reddy (1979) in part to highlight the limitations of modelling human commu-

nication as a signalling channel. Reznikova (2017) introduces information-theoretic methods

in studies of communication between ants in an attempt to get away from language-inspired

metaphors and methodologies. Harms (2004) promotes formal methods for capturing mean-

ing without recourse to translation, since translating animal signals into human language can
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only mislead us about the nature of meaning. All these theorists note the disparity between

communication theory and human language. In chapter 7 I continue work in that tradition,

arguing that animal communication can be described by the relevant mathematics precisely

because information theory captures something far more general than human engineering

constructs. It should become clear that information theory, rightly interpreted, is no more an-

thropocentric than any other branch of mathematics. Furthermore, in chapter 3 I argue that

claims about the irrelevance of information measures for “semantic information” are deeply

mistaken.

For now, we can show once more that both information and encoding are clearly defined

in the honeybee case. As discussed at length in section 2.2, the measurement of transmission

rate captures the accuracy of receiver bees, hence the efficiency of foraging behaviour. Hal-

dane and Spurway’s insight was to define an entropy over the space of relevant behavioural

outcomes such that when entropy is reduced by a communicative act, the measure of in-

formation rate is simply a measure of successful functional performance. This is an easy

measurement to perform in the honeybee case because foraging efficiency is linked to spatial

accuracy, and spatial accuracy is comparatively easy to ascertain. So information can be

defined, at least in this case, in terms of functional performance, rendering it both tractable

and relevant for selection.

Consider now the concept of encoding. After a period of controversy in the middle

of the 20th century, it became widely accepted that the different components of the bee

dance correspond to different spatial relations between the hive and the indicated food source.

These aspects of the dance vary with those spatial relations in a principled way. If they did

not, receivers would be unable to reliably exploit the relevant food source. Although there
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are several other factors affecting transmission rate, the mapping between spatial relations

and dance features clearly affects it too.

Could the waggle dance mapping be an encoding in the relevant sense? In section 5.5 I

argue that mapping rules are not strictly encodings, so we need to be careful here. There are

cases where encodings and mapping rules coincide. The central model is an example. Codes

in the central model are syntactic transformations from source string to codestring. The

mapping rule is a semantic transformation that also takes source strings, considered as world

affairs, to codestrings, considered as signals. The sense of encoding applicable to the waggle

dance has a similar character. Scouts experience the location of food and dance accordingly.

There is both a direct causal link between food location and dance (the ‘encoding’), and a

functional mapping between them that explains receiver success (the mapping rules). It is

conceivable that, beyond the central model, the term ‘encoding’ more naturally applies to

the mapping rules for the signalling system. Nonetheless, it is important to distinguish how

a signal is produced and what it is supposed to bear a mapping relation to.

Different mappings can play the same functional role. Consider the round dance, an

alternative to the waggle dance used when food sources are very close. This dance has no

directional component, meaning that on average its transmission rate would be lower than

the waggle dance. Greater articulation affords greater transmission rate, which presumably

contributes to the explanation why the waggle dance is articulated into different components.

In general, when behavioural ecologists talk of information being encoded in animal sig-

nals, they are referring to a mapping between signal and world. The mapping explains how

receiver behaviour covaries aptly with the state of the world.

Owren, Rendall and Ryan offer further considerations on the role of information in ani-
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mal communication studies. One of the strongest arguments launched by information scep-

tics is the problem of conflicting interests. Many animal interactions that behavioural ecology

counts as signalling occur between organisms whose evolutionary interests are imperfectly

aligned. The informational perspective was licensed for the waggle dance in part because

bees belonging to the same colony can be treated as having unified interests in the context

of foraging. When the assumption of cooperation is relaxed, what becomes of information?

I discuss this question in chapter 7, especially section 7.2. To anticipate, the informational

perspective is most relevant for paradigmatic signals. But the fact that some – perhaps many

– signals in nature are sent between organisms with conflicting interests does not jeopardise

the salience of information in the cooperative case.

2.5 Conclusion

There is at least one case in which information is literally transmitted by an animal signal.

The waggle dance improves the performance of watching scouts, and evolved for this reason.

Information in the dance is measured in terms of the amount of functional improvement it

brings about. Because functional improvement is defined in terms of receiver bees finding

a particular source of food, its extent can be measured and converted into informational

units. Scepticism about the model underpinning these calculations is sometimes mistaken

and therefore unwarranted. However, the strongest challenge to universal application of

the information concept in behavioural ecology is the threat of divergent interests between

signallers. This problem has not been dealt with yet, and will be addressed in chapters 6 and

7.
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Information and content

3.1 Introduction

Philosophical approaches to content with an eye on the science of information typically be-

gin with something like this thought. Information as defined mathematically has a role to

play in scientific theorising, but it does not possess the requisite properties to be identified

with content. Information might form part of a definition of content, but information alone

is not content. In particular, mathematical information says nothing about correctness condi-

tions (Godfrey-Smith and Sterelny, 2016; Lean, 2014; Piccinini and Scarantino, 2011) (Shea,

2018, p. 13). The strongest version of this idea is the irrelevance claim – the claim that

mathematical measures of information are irrelevant for philosophical theories of semantic

content.

In reaction to this sceptical view, others have argued that informational properties just

are semantic properties (Isaac, 2018; Skyrms, 2010). Their claim is supported by the associ-

ation of statistical vectors with signs, that supposedly capture their semantic content. These

vectors, which I call statistical content and describe in more detail in appendix C, capture

correlational relationships between a sign and world affairs. By associating lists of correlated

states with a sign, Isaac claims we capture the sign’s semantic content, what it ‘says about

the world’ (Isaac, 2018, p. 2). On this view, semantic content is universal: virtually every

event carries it in some form or other, because virtually every event is statistically correlated

90
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to at least some degree with others.

In this chapter I challenge both the sceptical view and the universality response. Rather

than simply identifying information with content, I will redraw some traditional boundaries

between concepts. Many of the properties claimed to be important for content can indeed

be found in the mathematical definition of information. But while the association of signals

with correctness conditions is ineliminable from communication theory, the same is not

true of all applications of informational measurements. Statistical content does not play the

explanatory role required of semantic content, because statistical content does not specify

correctness conditions.

The chapter proceeds as follows. I argue that communication theory can be treated as

a branch of game theory (section 3.2). Agential behaviours – strategies in the language of

game theory – appear in communications engineering as codes. In section 3.3 I introduce,

and explore the provenance of, two popular sceptical claims about the relevance of infor-

mation theory for philosophical accounts of semantic content. Then in section 3.4 I argue

against both sceptical claims, highlighting several interpretive mistakes they are predicated

upon. In section 3.5 I push against the prevailing view that distinguishes mathematical and

semantic concepts of information. Finally, section 3.6 responds to objections. While this

chapter is broadly negative – arguing against scepticism and universalism – chapter 4 offers

a positive view of teleosemantic mapping relations and their explanatory role.
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3.2 Communication theory as game theory

Game theory was originally conceived as normative. von Neumann and Morgenstern (1944)

published the foundational text, since when game theory has been applied in economics.

In this domain, game theory provides advice for rational agents, strategic interactors who

represent utilities in the form of preferences and combine them with beliefs to choose optimal

actions. Although it can be interpreted as predictive, describing what humans faced with

economic decisions will do, its highly idealised models are rarely accurate as representations

of real agents. Instead, it can be treated as a way of determining the best course of action in

a given situation.

Game theory’s descriptive features come out most clearly in its counterpart, evolutionary

game theory. Instead of rational agents, the denizens of evolutionary models are strategic

interactors produced by selection. Evolutionary agents do not have preferences in the sense

of cognitively represented utilities. Their behaviour can nonetheless be explained in terms

of the payoff schedule that produced them. These payoffs play the role of utilities, and are

commonly associated with evolutionary fitness.

3.2.1 Codes are pairs of strategies

In evolutionary game theory, selection gives rise to strategies. Signalling strategies are pairs

of behaviours that serve to coordinate sender and receiver activity. The central model of com-

munication theory is a sender-receiver model. Signallers and their strategies are chosen by

rational agents – human engineers. This is no less an instance of selection than evolution by

differential reproduction. Communications engineers do not describe senders and receivers

as performing proper functions. Nevertheless, in both cases design is an ineliminable part of
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the analysis. It may be tacit, it may be naturally selected, but design is still design.

The central model falls into the sender-receiver paradigm, but it underspecifies how ex-

actly the bare framework is to be overlaid. For example, consider the simple correspondence

depicted in figure 3.1B. This is the canonical interpretation of the central model in terms of

game theory. Martínez (2019) uses this representation to argue for links between game the-

ory and communication theory. Earlier, Godfrey-Smith suggested such a connection, citing

Lewis (1969) as the originator of sender-receiver games:

Shannon took for granted the sender and receiver roles, and gave a theory of
the properties of channels that could achieve coordination between them; Lewis
took for granted the possibility of a channel, and gave a first account of how
agents could come to play the sender and receiver roles – how these roles could
be stably occupied.

Godfrey-Smith (2011, pp. 1289–90)

Although alternative representations are available (some of which are depicted in figure 3.1C

and D), in what follows we shall be interested in the canonical interpretation.

Consider the behaviour of the encoder, as a sender, and decoder, as a receiver. A shared

code is a coordinated pair of strategies. Strictly, an encoding is a function from a string in

the source lexicon to a string in the code lexicon. Conversely, decoding is a function from a

string in the code lexicon to a string in the source lexicon. Depending on the channel and the

required accuracy, decoding might not precisely ‘undo’ encoding. The result might not be

exactly the same string, but it might be close enough.1 But the decoding function is chosen

together with the encoding function in order to solve a joint problem. Desirable properties

1See chapter 6 for details of rate-distortion theory, the branch of communication theory that defines what
‘close enough’ means and shows how to achieve it.
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Figure 3.1: Three different ways to map the central model (depicted in A with noise node
omitted) onto the sender-receiver framework. B shows the canonical representation. In C,
each pair of causal nodes in the central model is treated as a sender-receiver system; each
arrow is therefore a signal. In D, the source and encoder are collapsed to a single sender node
and the receiver is correspondingly amalgamated; there is therefore no notion of encoding
and the state and act are unspecified.

of signals, such as unique decoding, generate constraints on optimal coding methods. All of

this appears in introductory texts on communication theory (Cover and Thomas, 2006, §§5,

10) (MacKay, 2003, §§5-18, Part VI). These are problems of joint proper function, and they

are solved by jointly selecting sender and receiver behaviour.

An immediate worry is how to interpret utility (or payoffs) in a communication theory

context. This highlights our key difference between communication- and game-theoretic

analysis. Game theory equivocates between ‘what will the players do?’ (the evolutionary or

descriptive approach) and ‘what should the players do?’ (the rational or normative approach).

Communication theory asks the second of these. It is a prescriptive theory of engineering

design. As a result, there must be assumed payoffs, even if they remain tacit. And indeed

there are, lurking in the background of the original statement (Shannon, 1948a) but later

brought to the fore:
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Consider a situation in which there is a measure of the fidelity of transmission
or the “distortion” between the original and final words. [...] The [distortion]
quantity di j may be thought of as a “cost” if letter i is reproduced as letter j.

Shannon (1959, p. 326)

To anticipate somewhat: the goals of engineers, specified in terms of distortion, imbue sig-

nals with content. This is in addition to any content the original symbol string may happen

to have. We will return to these costs in chapter 6, when we consider what happens when

costs diverge for sender and receiver.

I want now to show that codes are a special case of strategies. In signalling games, a

strategy is a function from a world state to a signal or from a signal to an act.. By casting

the source string as a world state, the code string as a signal, and the decoded string as an act

(figure 3.1B), the result follows immediately.

Do source strings really count as world states? As far as I can tell, there really is no

difference between the formal properties of world states in signalling games and the formal

properties of source strings in the central model. All that is required is a finite distribution

over possible states, which we identify with the probability distribution over possible source

strings. It just so happens that the world state is made up of concatenations of symbols rather

than, say, the occurrence of predators. Martínez (2019) makes much the same point.

There is a further sense in which codes are a special kind of strategy. In addition to

dealing with strings rather than world states, they are selected together rather than being pro-

duced by distinct selection processes acting on each agent individually. Codes are encoding-

decoding pairs. Typically this assumption is tacit. For example, Cover and Thomas (2006,

p. 183) define communication as occurring when “the physical acts of A have induced a de-
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sired physical state in B.” Game theorists (not to mention behavioural ecologists) would be

forgiven for interpreting this to mean that the changes in B were desired by A. But there is no

distinction between what A and B want in this context. A human engineer is the sole ‘source’

of normativity for the system, designing both agents to achieve the same end. We cannot

distinguish between the interests of A and B.

3.3 Origins of scepticism

In this section I identify two popular sceptical claims about the application of informational

measures in the functional sciences, and trace them back to two true statements about com-

munication theory and information theory. In the following section I argue that both sceptical

claims are false. They are not entailed by either of the two true statements or their conjunc-

tion.

3.3.1 Two sceptical claims

The sceptical claims I take issue with are:

Irrelevance: Formal tools from communication theory have no relevance for

correctness conditions.
Insufficiency: Formal tools from communication theory are not sufficient to
specify correctness conditions.

Both claims appears to be prompted by two propositions which are indeed true. For conve-

nience I label them as follows:

SHANNON’S WARNING: In the central model, the meanings of source strings
are irrelevant to the engineering problem of communication.
UBIQUITOUS INFORMATION: Formal measures from information theory (such
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as surprisal, entropy and mutual information) can be applied to any statistical
variable (not just signals).

I will demonstrate that contemporary advocates of the sceptical claims are drawing directly

on the two true propositions. Through a history of mutation and misunderstanding, the scep-

tical claims have come to seem foundational, when they are anything but. Philosophy has

made a collective deductive misstep: neither of the two true propositions, nor their conjunc-

tion, entail Irrelevance or Insufficiency.

3.3.2 Shannon’s Warning

Shannon published his foundational texts in 1948 (Shannon, 1948b,c). In the first introduc-

tion he writes:

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning; that is they refer to or are correlated according
to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem.

Shannon (1948b, p. 379), emphasis original

Clearly message in this context refers to a source string. Shannon warns that the semantic

properties of lexical elements do not affect the process of transmitting and reconstructing

them.

In 1949 Shannon’s papers were released in a single volume with prefatory remarks by

Warren Weaver (Shannon and Weaver, 1949). One of Weaver’s comments expands on Shan-

non’s earlier technical statement:

In fact, two messages, one of which is heavily loaded with meaning and the
other of which is pure nonsense, can be exactly equivalent, from the present
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viewpoint, as regards information. It is this, undoubtedly, that Shannon means
when he says that “the semantic aspects of communication are irrelevant to the
engineering aspects.” But this does not mean that the engineering aspects are
necessarily irrelevant to the semantic aspects.

Shannon and Weaver (1949, p. 8)

There are a couple of things worth noticing here. First, Weaver slightly misquotes Shan-

non (“the semantic aspects” instead of “these semantic aspects”). In context the mistake is

insignificant, because the preceding sentences demonstrate that Weaver interprets the claim

accurately. Out of context, however, the misquotation can be read as stating categorically

what I deny: that no semantic properties are relevant to the well-functioning of engineered

communication systems.

Second, the final sentence of the quote is rather mysterious. It seems to suggest that

there is some connection between the engineering problem and semantic issues. The only

philosopher I am aware of trying to interpret this part of the quote is Dretske (1981, p. 41)

(see below).

Shannon’s Warning is salient in a system with two lexicons. The central model is an

example. Symbols of its source lexicon might be able to be combined in order to produce

messages that are meaningful in some sense, but any such meanings are not represented in

the mathematics. Those meanings therefore do not play a part in the statement or solution of

the fundamental problem of communication.

One might think that the meanings of source strings could play a role in solving this

problem. An intelligent observer receiving the noisy signal SHALL I COMPARW TGEE TO

A SUMNERS DAY might be able to reconstruct the original on the basis of its presumed

meaning. The point of Shannon’s Warning is not to rule this out, but to circumscribe the
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statistical aspects of the problem.2

The ramifications of Shannon’s results were understood immediately. In London, a series

of symposia were established to discuss the theory and its implications. As Donald MacKay

later noted, these early meetings were one source of what I am calling the Irrelevance claim:

By the time of our Third London Symposium on Information Theory in 1955,
it had become something of an accepted saying that ‘information theory has
nothing to do with meaning’. The time seemed ripe to question this hardening
dogma...

MacKay (1969, p. 79)

Despite MacKay’s intentions, the dogma hardened rapidly. Recently, Freeman Dyson has

expressed it thus:

The central dogma [of information theory] says, “Meaning is irrelevant.” Infor-
mation is independent of the meaning that it expresses, and of the language used
to express it.

(Dyson, 2011, para. 5)

In philosophy, Bar-Hillel and Carnap (1953) called very early for a companion to com-

munication theory that would formalise semantic information:

The Mathematical Theory of Communication, often referred to also as Theory
(of Transmission) of Information, as practised nowadays, is not interested in
the content of the symbols whose information it measures. The measures, as
defined, for instance, by Shannon, have nothing to do with what these symbols
symbolise, but only with the frequency of their occurrence.

Bar-Hillel and Carnap (1953, p. 147)

Their goal was to develop a semantic theory of information, characterised as follows:

2In fact, it might not take much sophistication to design an error-correcting receiver that makes use of the
fact that RW rarely occurs in the messages it receives to correct COMPARW to COMPARE on purely statistical
grounds. Weaver’s remarks include an extensive discussion of such issues (Shannon and Weaver, 1949, §2).
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The contents of the symbols will be decisively involved in the definition of the
basic concepts of this theory and an application of these concepts and of the
theorems concerning them to fields involving semantics thereby warranted.

Bar-Hillel and Carnap (1953, p. 148)

The resulting theory draws heavily on Carnap’s earlier work defining a notion of inductive

probability. We do not need to go through that background, though, to recognise that the

formal apparatus of the theory largely consists of measures from communication theory but

interpreted in terms of inductive probability rather than statistical probability. It is not clear

why inductive probability is a more content-friendly concept than statistical probability. In

any case, what is relevant for our purposes is that Bar-Hillel and Carnap’s scepticism had an

influence on philosophical understanding of the relevance of information theory for semantic

content.

Dretske (1981, p. 241, n. 1) compared Bar-Hillel and Carnap’s project to his own. He

also picked up on Weaver’s earlier remarks:

In this sense Weaver is surely right: communication theory is not irrelevant to
a specification of a signal’s information content. The measurement of a one-
gallon bucket cannot tell you, specifically, what is in the bucket, but it can tell
you something about what can be in the bucket. It can tell you, for example, that
it cannot contain two gallons of lemonade. And if you know, on other grounds,
that the bucket contains either two gallons of lemonade or one gallon of beer,
the measurement will determine, quite unerringly, the contents of the bucket.

Dretske (1981, p. 41), emphasis original

This seems to be the only role Dretske sees communication theory playing in the determi-

nation of signal content. And it is an impoverished role indeed: in the bucket example, the

possible contents of the bucket have nothing to do with their volume, because knowledge of
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which contents are possible is antecedent. So it is with communication theory. For Dretske,

all the theory can do is provide numbers. If we have knowledge of constraints with which

those numbers can be matched with contents, we might learn something about contents; but

the source of those contents is, as it were, extraneous to the theory.

Influenced by Dretske, Dennett repeated Bar-Hillel and Carnap’s call for a proprietary

distinction between mathematical and semantic information:

A more or less standard way of introducing the still imperfectly understood
distinction between these two concepts of information is to say that Shannon-
Weaver theory measures the capacity of information-transmission and information-
storage vehicles, but is mute about the contents of those channels and vehicles,
which will be the topic of the still-to-be-formulated theory of semantic informa-
tion.

Dennett (1983, p. 344), emphasis original

Dennett (2017, §6) is still pursuing this line. The 1983 paper was on the subject of cognitive

ethology, and influenced philosophers of mind, cognitive science and biology, as well as

scientists working on animal communication. Section 3.5 below picks up the thread, arguing

that the Shannon-semantic distinction is misleading and ought to be abandoned. The point

to take away here is that Shannon’s Warning escaped the context in which it was originally

made. The warning applies to systems in which one set of symbols is used to represent

another. The warning is that the meaning of the represented symbols are absent from the

theory. It implies nothing about the meaning of the representing symbols. As we shall shortly

see, the meaning of the representing symbols is indeed captured by the theory. Furthermore,

the warning was not intended as a statement about other kinds of system. It was certainly

not intended as a statement about biological signalling.
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3.3.3 Ubiquitous Information

Another famous feature of information-theoretic mathematics is its universality. Measures

such as surprisal, entropy and mutual information take statistical variables as parameters. A

statistical variable is just a distribution: any distribution has an entropy, and any element of

that distribution has a surprisal. Any two distributions (for which a joint distribution can be

defined) have mutual information between them.

Furthermore, these measures are useful outside the context of communication theory.

For example, as a way of capturing the spread of a distribution, entropy has been used as

a measure of ecological diversity (Margalef, 1957; Sarkar, 2013). More pertinently, as a

way of capturing correlations, mutual information has been used in domains as different as

historical linguistics (Jäger, 2018) and astronomy (Pandey and Sarkar, 2017). One strange

consequence is that any system can be imagined to be a communication system, simply by

measuring the mutual information between two variables and interpreting the result as the

transmission rate the system would have if it were being used to communicate something.

This makes it seem as though communication theory itself is unable to distinguish commu-

nication systems from merely statistically correlated systems.

3.4 Overturning Irrelevance and Insufficiency

In this section I argue, first, that communication theory is not irrelevant for semantic concepts

of information, and second, that communication theory quantifies the ‘correctness’ of signals

in a way that can be reasonably considered sufficient for a philosophical account of semantic

content.



103 3.4. Overturning Irrelevance and Insufficiency

3.4.1 Overturning Irrelevance

SHANNON’S WARNING leads some to argue along the following lines. The tools of informa-

tion theory are irrelevant for philosophical accounts of semantic content, because those tools

are agnostic to the meanings of source strings. The Irrelevance claim is usually couched in

terms of a proposed distinction between Shannon information and semantic information. I

address this distinction directly below, but first consider Piccinini and Scarantino’s assertion

of Irrelevance with respect to it:

As we have stressed, Shannon information does not capture, nor is it intended
to capture, the semantic content, or meaning, of signals. From the fact that
Shannon information has been transmitted, no conclusions follow concerning
what semantic information, if any, has been transmitted.

Piccinini and Scarantino (2011, p. 21)

The authors intend to assert SHANNON’S WARNING. But what they say entails that signals

in the central model need not have semantic content – and nothing they say establishes that

claim.3 The formalism of information theory is indeed blind to the meaning of the source

string (if it even has one), but what the formalism captures is still a meaning: the content

of the signal is the identity of the original string (and an instruction how to recover it).4

3It is difficult to interpret this passage because Piccinini and Scarantino use ‘semantic content’ informally
while giving detailed definitions of two kinds of semantic information. However, both this passage and the rest
of the article suggest that semantic information is necessary for semantic content. So if the fact that Shannon
information has been transmitted entails nothing about whether semantic information has been transmitted, then
it entails nothing about whether semantic content has been transmitted either. And since what is transmitted
is a signal, their claim is that the fact that Shannon information has been transmitted entails nothing about the
semantic content of the transmitted signal: in particular, the signal need not have semantic content at all.

4Here I assume a one-to-one mapping between source strings and codestrings. It is possible, however, for
an encoding scheme to map multiple different source strings onto the same codestring. In that case there is
still a mapping relation (or relations) between signals and source strings. It is just that the content of the signal
cannot be easily expressed propositionally, in the manner of ‘the content of signal x is string w’. A formal
theory of mapping relations is required to capture the content of such signals. Work towards such a theory is
discussed in chapter 6.
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Philosophers have conflated the true claim that source strings need not have semantic content

with the false claim that well-functioning signals need not have semantic content.

In section 5.5 I argue that signals in the central model bear teleosemantic mapping rela-

tions. In that section I also argue (as Millikan has argued extensively) that mapping relations

are the fundamental type of semantic content. To illustrate further, consider the source coding

theorem (appendix A). The theorem links entropy, a probabilistic measure, with a quantity

of symbols. It clearly embodies a representational notion in some sense: ineradicably, the

question that prompted the theorem and the result it offers both assume that the symbols are

being used to record the events in question. Cover and Thomas make this clear:

This theorem provides another justification for the definition of entropy rate – it
is the expected number of bits per symbol required to describe the process.

Cover and Thomas (2006, p. 115)

The extent to which “describ[ing] the process” is synonymous with the philosophers’ notion

of representation has not to my knowledge been asked often. I contend at the very least it is

equivalent to the teleosemantic definition of semantic content.

The illicit derivation of Irrelevance from SHANNON’S WARNING misses the important

fact that source strings are the representeds of the central model. The representations are the

signals. The central model relies on the representational relation between them.

3.4.2 Overturning Insufficiency

UBIQUITOUS INFORMATION leads some to argue along the following lines. Informational

measurements are not sufficient to specify semantic content, because they do not pick out

correctness conditions. Statistical correlations, as averages, do not admit of falsity for indi-
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vidual signals. All but the most permissive accounts of meaning require additional criteria

that a signal must meet for it to possess content.

Birch (2014b), for example, raises this objection to Skyrms’s account and suggests fur-

ther criteria for correctness. Hutto and Myin (2013, p. 67) state that “covariation in and of

itself neither suffices for nor otherwise constitutes or confers content, where content min-

imally requires the existence of truth-bearing properties”; they go on to argue that certain

kinds of socio-cultural practices are necessary for the latter. As we saw in section 1.6, both

Neander and Shea assert that informational measures are insufficient for correctness condi-

tions; they each add their own criteria including functional behaviour.5

Indeed, it may seem to follow from my remarks in section 1.3 of the present work that

UBIQUITOUS INFORMATION implies Insufficiency. There I said that the signal/cue distinc-

tion is relative to the explananda of the scientist. Informational measures such as mutual

information do not distinguish signals from cues. Such measures can therefore only be used

as part of an explanans whose explanandum does not distinguish signals from cues. How-

ever, a theory of semantic content should distinguish signals from cues. A theory of content

ought to tell us why signals possess correctness conditions and cues do not. Another way to

say this is informational measures are agnostic to the functions of the items they measure.

Since functions (I claim) are the heart of semantic content, those measures cannot capture

semantic content.

We can reject the argument as follows. Communication theory does distinguish between

5It is less clear how Millikan takes her version of teleosemantics to relate to information theory. Millikan
(2017, p. 111) notes some differences between her definition of “natural information” and what she takes the
information-theoretic concept to be, but her aim seems to be distinguishing her account from that of Dretske,
rather than denigrating information theory.
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mere statistical correlations and those that can be used for signalling. A statistical correlation

would not support an encoding scheme. Changing the value of X would not lead to a change

in Y . The central model defines a directional causal link between the two. The existence of

a causal relationship between X and Y is required for Shannon’s theorems to apply. In short,

there is a difference between being able to learn about X from Y and being able to use X to

communicate something to Y .

Furthermore, signals in the central model bear teleosemantic mapping relations. They are

correct to they extent that they accord with the encoding procedure with which the system

was designed. For example, consider a system that transmits outcomes of coin tosses in

accordance with the code H → 1, T → 0. If a 1 is transmitted when the coin comes up tails,

the signal is false.

As a statistical average, mutual information – transmission rate – measures the extent to

which signals are inaccurate. In a system in which no signals map, transmission rate is zero.

In a system in which every signal maps perfectly – there is no noise, and the encoder makes

no mistakes – transmission rate takes its maximum value H(X). Mutual information is a

measure of the extent to which signals bear mapping relations, or alternatively the accuracy

of the relations they bear. This is so despite the fact that mutual information can also be used

to measure statistical correlations outside communication systems. The correlation between

a cue and its signified can be measured by mutual information, but then it is not being used

as a measure of accuracy.

What is more, communication theory provides tools for quantifying the severity of mis-

representation (Martínez, 2020). As explored in chapter 6, rate-distortion theory describes

trade-offs between signalling effort and accuracy of receiver behaviour. Such results would



107 3.5. The Shannon/semantic distinction

be impossible if there were not some sense in which signals in the central model can be false.

Sceptics might wish to argue that this is not the same sense of falsity required for a theory of

content, but since rate-distortion theory has been all but ignored in the relevant philosophical

literature, they would have to present novel arguments in order to do so.6

Proper function is not made explicit in communication theory. Nonetheless, as an engi-

neering discipline the systems it deals with are implicitly functional. Teleosemantics applies,

and central model signals have truth-conditional contents. The extent to which a given signal

is false can be quantified by considering the extent to which receiver behaviour deviates from

what the signalling system was designed to support.

The next section uses these considerations to argue that a popular distinction between

Shannon information and semantic information is misleading, and should be replaced by a

distinction between cues and signals.

3.5 The Shannon/semantic distinction

In this section I argue that we should reject a popular distinction between Shannon informa-

tion and semantic information. The explanatory work currently assigned to the Shannon/se-

mantic distinction is best performed by the more clearly understood distinction between sig-

nals and cues. As described in chapter 1, signals are transmitted and received by codesigned

entities, while cues are received by an entity not codesigned with the sender. The conceptual

differences between these two categories, as well as the range of formal tools required to

analyse them, are well understood and well supported.

6Of course, plenty of philosophers argue that teleosemantic mapping relations do not provide falsity in the
manner required for a theory of content. Presumably, Insufficiency is tenable once teleosemantics is denied.
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Recall, cues are signs whose sender is not codesigned with its receiver. A receiver bene-

fits from learning how to respond to the stimulus, but the source of the stimulus does not ben-

efit – either because it has incompatible interests with the receiver or because is not an agent

at all. In contrast, signals definitionally require a cooperative relationship between sender

and receiver. Both benefit from coordinating their behaviour with the use of a sign, produced

by one and perceived by the other. I shall argue that the cue/signal distinction is useful and

accords with both theory and practice in natural science. Meanwhile, the Shannon/seman-

tic distinction is inspired by a confusion about communication theory, and obscures fruitful

relationships between models of communication and strategic behaviour.

The Shannon/semantic distinction (Piccinini and Scarantino, 2011, §§4.1-2) (Godfrey-

Smith and Sterelny, 2016, §§2-3) has at least two points of origin. It is firstly a mutated

form of an earlier distinction between natural and intentional meaning, which may be traced

back at least to Brentano and found its clearest statement in Grice (1957). Prompted by

Dretske (1981, 1988) the distinction took centre stage in the teleosemantic literature of the

90’s (Millikan, 2001). The original distinction is still hard at work in Millikan’s teleose-

mantics (Millikan, 2017, §§11-12), but its mutated form is misleading. A second source is

Bar-Hillel and Carnap’s clarification of “information” as it appears in communication theory.

They distinguished the mathematical quantity from the semantic notion which is of interest

to philosophers (Bar-Hillel and Carnap, 1953). Dretske compared Grice’s approach, as well

as that of Bar-Hillel and Carnap, to his own project (Dretske, 1981, pp. 241-2, n.1 and n.10).

Soon after, the “still imperfectly understood” distinction was cited by Dennett (1983, p. 344

col. 2) and picked up by Krebs and Dawkins (1984, §§4.1-2), whence it found its way into

the behavioural ecology literature and prompted ongoing scepticism about the use of infor-
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mation theory in the study of animal signalling (Owren et al., 2010; Pfeifer, 2006; Sarkar,

2013).

The Shannon/semantic distinction follows from the Irrelevance claim. It entails that what-

ever semantic information is, it must be something richer than Shannon information, some-

thing that requires a different formal framework. This distinction has become so widely ac-

cepted that the Stanford Encyclopedia entry “Biological Information” is currently organised

around it (Godfrey-Smith and Sterelny, 2016). I have already argued against the irrelevance

claim in section 3.4. In this section I offer further arguments against the coherence of the

Shannon/semantic distinction.

I am going to argue by analogy with the property of volume and relational property

weight. Because those properties are well understood, I hope to show that (often implicit)

justifications for the distinction are bogus. I will draw on an argumentative pattern that can

be constructed for information, volume and weight. In the case of information, the argument

is as follows:

The information of a signal cannot tell you what signal it is. Many different sig-
nals can be measured using the same unit, bits. Since different signals can have
the same number of bits, measures of information cannot tell you the referent of
a signal. Further, the capacity of a channel – the maximum information that can
be transmitted through it – cannot tell you what signals will be passed through
it, or which states of the world will be the referents of those signals. There-
fore, there are two concepts of information: SHANNON INFORMATION, which
concerns quantities, and SEMANTIC INFORMATION, which concerns referents.

An argument along these lines seems to be what Scarantino has in mind in the following

passage:
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[W]e cannot fully capture the informational content of a signal by merely listing
the amounts of incremental information being carried. Informative signals do
not tell us just how much probabilities have changed; they also tell us what are
the states of affairs that had their probabilities changed. On Skyrms’s account,
two signals that carry the same amount of incremental information with respect
to four completely different states of affairs would have the same informational

content, captured by, say, the vector < 1, 3.4, −∞, 1 >. This is unacceptable.
Scarantino (2015, p.429, emphasis original)7

To rebut the argument, it will be worth exploring a couple of fanciful analogies.

Consider a mathematical theory of spatial volume. This theory provides units of measure

for volumes of objects. These units are commensurate with cubic metres, but in order to

make the analogy vivid we will call them Tufnels after the fictional scientist who originated

the theory. All physical objects can be associated with a measure of Tufnels. Your car might

be 1400 Tufnels in volume while your house is 35 kilotufnels. Objects can in principle be

compared in this way – you can say that your house is greater in volume than your car – but

it’s not obvious why such a comparison would be useful (unless you were trying to fit your

car inside your house). An extension to the theory allows engineers to measure the amount

of liquid that can be passed through an intermediary like a pipe. Importantly, the measure of

Tufnels per pipe segment does not specify what is being passed through the pipe. But we can

compare different pipes in order to see which will deliver liquid faster between two points.

We can measure the capacity of different pipes, but these measurements cannot tell us what is

7Scarantino is right to say that statistical content does not define correctness conditions but, as the following
analogies are intended to show, he is wrong to say that statistical content does not tell us what are the states of
affairs whose probabilities changed. Scarantino seems to assume that if a sign is about its signified, it must have
that signified as a correctness condition. Skyrms (2010) and Isaac (2018) also appear to share this assumption;
it is precisely what I deny.
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being pumped through them. An engineer may use Tufnel’s mathematics to choose the right

pipes for my house, but she cannot guarantee that the water board will not pump fluoride

through them. We tentatively conclude that there are two concepts of volume. First, there is

Tufnel volume, a concept associated with mathematical measures which allows engineers to

do useful things like recommend pipe installations. Second there is what we may call spatial

volume, a concept that identifies objects with spatial extension. Tufnel’s theory cannot say

what the objects of its measurements are: it can only measure them. We therefore need

a supplementary theory of volume, one that delivers the identity (whatever that means) of

spatially extended objects. In short:

The volume of an object cannot tell you what object it is. Many different objects
can be measured using the same unit, tufnels. Mathematical theory can tell
us about quantities of volume, but it cannot tell us about what objects those
quantities are volumes of. Further, the capacity of a pipe – the maximum volume
that can be put through it – cannot tell you what objects will be placed inside it.
Therefore, there are two concepts of volume: TUFNEL VOLUME and SPATIAL

VOLUME.

The argument is fallacious. Nobody expects mathematical measures to identify the objects

measured. If you measure something, you already know what you are measuring. Further,

the measure of capacity is an extension to, or useful application of, the original measure of

volume. Not only does a volume measure have nothing to say about the identity of the object

with that capacity, it is silent about the objects that can be put inside that thing – except with

regard to the property it is designed to tell us about, namely volume. The fact that it is silent

about the identities of objects is a feature, not a drawback, of the volume measure. The

concept SPATIAL VOLUME therefore has nothing to do with volume per se. It is a chimerical
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concept.

It is not clear what the counterpart theory of volume would be. A theory of the identity

or categorisations of objects? But what does this have to do with their spatial extension, if

it has nothing to do with the magnitude of this extension? Part of the confusion here stems

from the following legitimate observation. In the case of pipes, there can be a measure of

capacity without specification of what is flowing through the pipes (compare SHANNON’S

WARNING). This capacity, of course, is a rate: it says how much of something as yet unspec-

ified can flow through the pipe in a given time period. But note two crucial points that are

missed by this description. First, the measure in question is capacity, not volume. It tells of

how much something can contain, not how big something is. It is a derivative measure. Sec-

ond, there is an object associated with this capacity: the pipe itself. We have abstracted away

from what might be flowing through the pipe, but we are not thereby providing a measure

ignorant of physical objects: the pipe itself is an object, and the measure is associated with

it. The point comes through more forcefully when we talk about buckets rather than pipes.

A bucket has a capacity, which states how much of something can fit into it. We can specify

a bucket’s capacity without saying anything about what is or could be placed into the bucket.

This is no way entails that there are two concepts of volume, one that is agnostic to objects

and one that identifies them.

Incidentally, measures of capacity are not entirely agnostic as to what can go inside the

bucket. A bucket with a capacity of 1000 cubic centimetres cannot hold a steel rod of cross-

sectional area 10cm2 and length 100cm. It depends on the shape of the bucket, which might

be shallow and squat. The rod, which is rigid, may poke out over the top of the bucket. In

general, what is assumed by measures of capacity in both buckets and pipes is that the object
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they are to hold is liquid or gas. It is also typically assumed that the object carried is not

corrosive to the material out of which the bucket is made. A litre of hydrofluoric acid has the

same volume as a litre of water, but only one of them can be reliably contained in a metal

bucket with a volume of one litre.

The analogy with volume is silly in part because volume is a one-place property. A better

comparison would consider relational properties. Let us explore one such.

Consider a mathematical theory of weight. This theory provides units of measure for

weights of objects, called Newtons after the scientist who originated the theory. All physical

objects can be associated with a measure of Newtons. Your car might be 1400 Newtons in

weight while your house is 35 kilonewtons. Objects do not have weight intrinsically: it is

a relational quantity that depends on the planetary body on which the object is found. An

extension to the theory allows engineers to measure the amount of weight that can be lifted

by a platform like an elevator. Importantly, the measure of Newtons per elevator doesn’t

specify what is being lifted. Nor, initially, does it say how fast the object moves: we would

need to add a measure of how many metres per second the platform could traverse, in order

to obtain a measure of Newtons per second. Once we have this measure, however, we can

compare different elevators in order to see which will deliver objects faster between two

points. We can measure the capacity of different elevators, but these measurements cannot

tell us what is being lifted by them. An engineer may use Newton’s mathematics to choose

the right elevator for my office, but she cannot guarantee that burglars will not use them. We

tentatively conclude that there are two concepts of weight. First, there is Newton weight, a

concept associated with mathematical measures which allows engineers to do useful things

like recommend elevator installations. Second there is what we may call spatial weight, a



Chapter 3. Information and content 114

concept that identifies objects with mass. Newton’s theory cannot say what the objects of its

measurements are: it can only measure them. Furthermore, the theory cannot tell us which

planetary body the object has weight with respect to. We therefore need a supplementary

theory of weight, one that delivers the identity (whatever that means) of objects with mass.

In short:

The weight of an object cannot tell you what object it is. Many different objects
can be measured using the same unit, Newtons. Mathematical theory can tell
us about quantities of weight, but it cannot tell us about what objects those
quantities are weights of, nor with respect to which gravitational body they are
measured. Further, the capacity of an elevator – the maximum weight that can be
put into it – cannot tell you what objects will be placed inside it. Even further,
weight measurements cannot tell you which gravitational body the weight is
being measured with respect to, nor, in the case of the elevator, which planet
the elevator will be installed on. Therefore, there are two concepts of weight:
NEWTON WEIGHT and SPATIAL WEIGHT.

What was said about the concept of SPATIAL VOLUME applies equally here. Mathematical

quantities are not supposed to identify objects. The weight of an object tells you neither

what object it is nor what planetary body its weight has been measured with respect to. The

weight-capacity of a lifting platform does not tell you which platform it is, nor what objects

it will be used to lift. Again, this is a feature rather than a drawback. Again, the concept

SPATIAL WEIGHT is chimerical.

What is different about weight is its relational nature. It is a more suitable analogy for

the case of signals. With signals, what we want to know is the identity of the state of affairs

that is the signal’s referent. This is akin to wanting to know the identity of the planet that an

object is weighed with respect to. But if you weigh an object, you already know what planet
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the measurement is being made with respect to.

Again, the sceptic might complain that communication channels are agnostic to the mean-

ings of signals that flow through them. But this is to say nothing more significant than that

elevators are agnostic to the objects they lift. The sceptic might retort that communication

channels, no matter the size, can transmit meanings that are extraordinarily significant to

their receivers. For example, a 1-bit channel may carry a signal interpreted as ‘attack’ or ‘re-

treat’. A single signal sent through this channel may launch a thousand ships; surely this is a

magnitude of significance not captured by communication theory? But this is to say nothing

more than that an elevator on the moon can carry much more than an elevator on earth. The

significance of a signal is relative to its users, just as the weight of an object is relative to its

planetary body.8

3.5.1 The origin story of Shannon information

It is possible to reconstruct my opponent’s argument more charitably.9 In understanding

physical properties, there are (at least) two kinds of approach we can pursue. One is the

measurement approach: we develop mathematical measures and engineered tools to allow

us to measure the property in question. Another is the analysis approach: we attempt to de-

termine how the property is manifested, by investigating the more fundamental objects and

properties that give rise to it. In the case of weight, the measurement approach was most fa-

mously spearheaded by Newton, but the (correct) analysis had to wait until general relativity

and accounts of fundamental particles like the Higgs boson. In the case of semantic content,
8I have mixed up the analogy a little here. Initially, I treated the gravitational relation as analogous to the

sign-signified relation. Here I treat it as analogous to the sign-user relation. I do not think this really matters;
the point to bear in mind is that measures of relations already have their relata specified.

9An anonymous examiner suggested the following account.
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the measurement approach we are considering in this chapter is the theory of information

founded by Shannon. The analysis approach for semantic content belongs to the discipline

of analytic philosophy.

The fact that there are these two kinds of approach does not by itself entail that there are

two kinds of properties. But once a certain measurement approach reaches maturity, it could

turn out that the property it tracks is different from that which is the target of the analysis.

That is the origin story of Shannon information: it is measuring something real, but what it

measures is not what was previously informally referred to by the term ‘information’ (and

what philosophers now call semantic content).10 The same might have been true of Newton’s

approach: it might have turned out that what he ended up measuring was different from the

property we now call gravity, and which is analysed by general relativity and particle physics.

My opponent’s arguments, as I reconstruct them in this section, move from claims about

features of the measure to the claim that there must be two distinct properties involved. It

is certainly possible that the measurement approach to a certain property could, over time,

diverge from the original property it sought to measure. Then there would be two distinct

properties in question. One would be tracked by the original analysis approach, the other

would be a novel property accidentally discovered as a result of refinement of the measure.

The difficulty with claiming that this has happened is in establishing that what is being mea-

sured is different from the original target property. My opponent claims to have established

this for Shannon information. The analogies above supposed to show that that claim cannot

possibly be established in the way my opponent intends.

10Shannon probably never considered himself to be trying to measure semantic content. The point of the
origin story is just to show how my opponent seeks to justify the claims of irrelevance and insufficiency.
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It is not possible to move from the claim that ‘different signals can have the same number

of bits’ to the claim that ‘there are two different concepts of information’. It is not possible

for the same reason that it is not possible to move from the claim that ‘different objects

can have the same weight’ to the claim that ‘there are two different concepts of weight’.

My point is not (just) that communication theory provides tools for measuring the relations

that teleosemantics claims ground semantic content. My point is that my opponent cannot

possibly have established the counter-claim. If they could, they would be able to establish

similar claims for volume and weight.

Scarantino, for example, objected that statistical content vectors omit the referents of

signals because they contain only numbers. Two signals bearing quantitatively similar prob-

abilistic relations to different states of affairs could have the same content. In much the same

way, two objects bearing quantitatively similar spatial and mass-ratio relations to different

gravitational bodies could have the same weight. Pursuing the analogy, we might imagine

17th century metaphysicians interested in the relation between everyday objects and the earth,

or between the earth and the sun. Suppose they learned of Newton’s work, but objected that

although he managed to quantify gravitational force, something about the relation of interest

was omitted from his calculations, because two distinct objects might have the same weight.

Such a view would be at best unfair, at worst absurd.

Scarantino believes statistical content vectors ought to contain an explicit term that dif-

ferentiates one event space from another. But that is not how the relevant mathematical

terminology works. Each content vector has an already defined event space W , just as each

weight measurement is made with respect to an already specified planetary body. Specifica-

tion of a sign’s statistical content vector ineliminably includes its referent. I suspect that if
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Scarantino’s concerns were valid, it would never be possible for a specification of content to

pick out the state of affairs that is the sign’s referent. After all, we must construct a definition

of content using only the terms available in our language. Following Scarantino, we might

include a phrase such as ‘eagle present’ in our content specification. But such terms do not

by themselves indicate the state of affairs; we require, by Scarantino’s logic, an extra piece

of terminology that gives the correct interpretation of the term. But we would then require

an interpretation of the interpretation, and so on.11 Scarantino’s argument is predicated on a

confusion about what must be explicitly versus implicitly stated in a formal definition.

Bringing us back to the target of the analogy, the central model embodies many assump-

tions corresponding to those of fluid engineers installing water pipes or builders installing

elevators. Not everything may be transmitted, because there may not be a suitably efficient

encoding. There is even a correspondence with corrosive material. Depending on the range

of behaviour of the receiver, there are strings that cannot be passed in full. For example,

consider a string with an instruction in the receiver’s language: “Destroy this channel. Print

‘456’.” Assuming a memoryless receiver, the second part of the instruction will not be car-

ried out, because the first part is ‘corrosive’. It may superficially have the same information

content as the message “Print ‘123’. Print ‘456’.” But its effects are different.

I remain unconvinced that the distinction between Shannon and semantic information

is tenable or even coherent. I will now demonstrate that the job vacated by that redundant

distinction is best performed by the cue/signal distinction.

11This regress seems related to the Kripke-Wittgenstein paradox (Wittgenstein, 1953, §198ff) (Kripke,
1982).



119 3.5. The Shannon/semantic distinction

3.5.2 Cues and signals

As we saw in chapter 1, cues and signals lie on a continuum. Just as there can be degrees of

adaptation leading from disposition to behaviour, there are degrees of coadaptation from joint

disposition to joint behaviour. A sign that mediates an interaction becomes more signal-like,

on this definition, when production of and response to the sign become coadapted behaviours.

The sign is more cue-like as production and response are less coadapted.

A cue has no function qua cue. Whatever ‘sends’ a cue, if it has a function, is not the

same function as that for which the cue is used. So for example, a sign sent between two

cooperating entities is a signal for them, but is a cue for an eavesdropper. The contemporary

view seems to have confused cues for Shannon information, which prompts the belief that

informational quantification can only measure cues. Given that anything could in principle

become a cue if there was an agent who could make use of it, Shannon information is thought

to be an incredibly broad resource, and as a result virtually useless for biological theorising

(Godfrey-Smith and Sterelny, 2016; Kolchinsky and Wolpert, 2018; Shea et al., 2017).

Contemporary scholars, I suggest, often unknowingly aim for the cue/signal distinction.

The popular claim is that Shannon information captures statistical correlations, and this alone

cannot distinguish cues and signals (Godfrey-Smith and Sterelny, 2016, §2) (Owren et al.,

2010, pp. 772–3). However, the term ‘Shannon information’ promotes confusion here. It is

true that the information measure employed by statistical decision theory is typically applied

to cues and not signals. It is also true that this measure is derived from Shannon’s work

(Shannon, 1948b) which is itself a continuation of Hartley (1928). But communication the-

ory has other formal tools beyond measures of correlation. It has other commitments besides

the condition that signals covary with their sources. Communication theory is not simply



Chapter 3. Information and content 120

statistical decision theory, though it is closely related. The mistake is likely promulgated by

the association of Shannon’s name with the quantity used in decision theory. It would be

best to retire the misleading label, and stick to distinguishing the explanatory roles of signals

and cues. One of them bears mapping relations while the other does not.

The sceptic might argue that Shannon information is just another name for statistical

content. As I myself claim, statistical content does not capture correctness conditions. We

need another formal tool, and I endorse functional content (chapter 6). One might wonder

whether this is the distinction I have been claiming is incoherent. It would admittedly be a

partial victory to cement ‘Shannon information’ as statistical content and ‘semantic informa-

tion’ as functional content. But I am reluctant to endorse this move, for two reasons. First,

association of Shannon’s name with a mathematical term that is known to be too weak to

capture correctness conditions leads many to assume communication theory has no more

tools to offer. I have already cited Neander, Shea, Dennett, and Piccinini & Scarantino as

holding this view or something dangerously close to it. If they all can be misled, something

radical needs to change, and I suggest removing Shannon’s name from the proceedings. Sec-

ond, neither statistical content nor functional content are explicitly defined in communication

theory, although both are implicit. We would be equally justified in calling functional con-

tent ‘Shannon information’, glossing it as ‘what a signal is supposed to indicate about the

source’. In fact, there is probably better justification for associating Shannon’s name with

functional content than statistical content: signals in the central model have functional con-

tent, while other statistical relationships investigated with information-theoretic tools (with

which Shannon was less concerned, if at all) do not.
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3.6 Objections
3.6.1 Scaling down: mapping relations are not semantic content

Objection. A recent trend seeks to distinguish two concepts I treat as equivalent. The distinc-

tion, advocated by several authors including Price (2008, §5), Hutto and Myin (2013, p. 67),

Rescorla (2013) (who cites Burge (2010) as inspiration) and Lean (2014), runs as follows.

Simple signalling systems carry information in the guise of reliable correlation (“functional

isomorphism”, “Shannon information”) – tokens that correspond to worldly states in a man-

ner sufficient for successful behaviour. But correlational information is to be distinguished

from the much richer notion of content, which is characterised by truth conditions.

Response. There is far more to say about this distinction and its motivations than can

be addressed here. I have already remarked on the unfortunate term “Shannon information”

(section 3.5). The distinction lies at the heart of a family of objections to teleosemantics.

Roughly, these objections state that the theory is unable to account for the content of many

familiar mental states like beliefs and desires. But these objections rely on an unspecific

concept of semantic content. In particular, scholars who press the objection typically as-

sume a distinction between the content of mental states and the content of biological signals,

without sufficiently characterising that distinction (Millikan, 2013b). In particular, the ‘rich’

notion of content that supposedly belongs to mental states is not defined in enough detail to

distinguish it from the ‘poor’ notion that teleosemantics ascribes to biological signals. As a

result, these proposed objections to teleosemantics are as yet inconclusive.

Nonetheless, these are pressing concerns for those who wish to employ teleosemantics

in philosophy of mind and cognitive science. Fortunately, since we are here only dealing
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with biological explanation, our task is much less complex. We need only make plausi-

ble the claim that the distinction between Shannon information and semantic information is

chimerical in communication-theoretic applications. Consider, for example, a definition of

semantic information in terms of truth conditions. As custom has it, semantic information

is about something – can be true or false of the objects or events that are its topic. On the

contrary, Shannon information need not be about something. This characterisation ought to

be enough to distinguish the two concepts, so why do I claim the distinction is unreal?

It cannot be the case that semantic information is about something whereas Shannon in-

formation is not. The premise of the current objection is that simple signalling systems carry

only Shannon information. This is equivalent to saying they exploit reliable correlations in

order to achieve success. But if a system is exploiting a reliable correlation, it is dealing with

some accessible token that bears a relation to some other inaccessible process or object. This

relation is ‘aboutness’, on the teleosemantic account.

The objection, then, is not so much that biological signals do not have ‘aboutness’, but

that their ‘aboutness’ is not sophisticated enough to be content. Without sufficient character-

isation of this latter term, however, the dispute risks being merely verbal. Different scholars

use the term ‘content’ to mark different distinctions. In this project, I outline what I take to

be important distinctions in the context of biological explanation. The issue of labelling the

different entities should be tackled once they have been firmly distinguished. For example,

one might say that a token is a signal only when it is produced for the purposes of being

used. This would not prevent others from using the term ‘signal’ more broadly. For example,

preserved features that can be used to infer historical processes are sometimes called ‘signal’

in phylogenetics, though in my terminology they would only be cues (whose receiver is a sci-
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entist). Similarly, one might say that a signal is a representation only when it is sufficiently

decoupled from use. This would not prevent others from using the term ‘representation’

more broadly – in particular, using it as a synonym for signal, as Millikan does.

If all this is agreed, the objection states that there is some firm, explanatorily relevant dis-

tinction between the aboutness possessed by biological signals and the aboutness possessed

by states that are the traditional subject of philosophical theorising – beliefs, desires, and

other mental states. So be it: I need not respond to that objection here (though I offer rele-

vant comments in section 5.4). This is a work of philosophy of biology, not philosophy of

mind. I am not here concerned with defending teleosemantics against claims that it cannot

serve its original purpose, to account for the semantic content of thoughts and human natural

language. I am only concerned to show that it adequately interprets applications of commu-

nication theory in biological contexts. I am satisfied that by drawing important distinctions,

we can see the proper application of the theory to this task. Using the term ‘semantic content’

to refer to teleosemantic mapping relations may cause problems in a wider theoretical setting.

Within the scope of this project, however, I have been clear about how the term ought to be

interpreted.

3.6.2 Monoculture: Shannon information is semantic

Objection. Brian Skyrms (2010) tells us that information is everywhere, and has semantic

content regardless of whether it is used. In particular, semantic content can be defined in

terms of objective probabilities. Coevolved senders and receivers use signals to coordinate

behaviour, but they are doing nothing more complicated than producing a resource that is

already prevalent in the world. Alistair Isaac (2018) gives this claim real force, by expanding
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Skyrms’s formalism to give a rigorous semantics for Shannon information. According to

Isaac, a semantics must accord with the following criteria:

I take the constitutive feature of a semantics to be that it assigns a unique, evalu-
able formal object to each element in a set that characterizes all and only the
content conveyed by that element – intuitively, what it ‘says about the world’.

Isaac (2018, p. 6)

A semantics for a system is a method of determining the meaning of each element in the

system. Isaac claims statistical content counts as a semantics for Shannon information.

Scarantino (2015) pursues a similar line. He questions the explanatory distinction be-

tween signals and cues, in effect defining falsity in terms of receiver expectations. On this

view, both signals and cues can be false, and their falsity explains failure in the same way.

Like Isaac, Scarantino describes a formalism that can be interpreted as a semantics for sig-

nals and cues. Unlike Isaac (and unlike Skyrms), he is non-committal on the interpretation

of probabilities underlying the formalism. While Isaac follows Skyrms in being an objec-

tivist about probabilities, Scarantino’s approach is ecumenical: his formalism holds across

different interpretations of probability.

In all, then, a single notion of information is sufficient to do explanatory work in biology.

In contrast to my distinction between signals and cues, these authors claim that the ‘about-

ness’ borne by both is equivalent. Skyrms, Isaac and Scarantino claim that cues can be false,

on the grounds that their semantics assigns content to them.

Response. When modelling a sign-using system, whether or not signals differ from cues,

and how they do if they do, depends on our explanatory goals. Signals and cues are theoreti-

cal entities, designed to participate in explanations of success, failure, and surface behaviour.
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But the objection seems to draw an unreasonable conclusion from a reasonable premise. In

section 1.3, we saw that the distinction between signals and cues collapses when we ig-

nore the agency of the sender. Similarly, communication-theoretic problems collapse into

decision-theoretic problems when the design of the sender is ignored. The objection seems

to require that such a perspective is the only one – or at least a privileged one – from which

to explain behaviour. And such a position, I maintain, is untenable. Explaining signalling

behaviour sometimes requires treating the entire system as a functional unit. Explananda in

such cases may include sender and receiver behaviour or morphology. It may also include

the form of the signal itself, in cases where the signal is physically distinct from the sender.

Such explanations do not exist for cues. The form of a cue is never explained by its use.12

Furthermore, I agree that even cues have a ‘semantics’ in Isaac’s sense. For him, a

semantics is an association of a formal property with a set of signs. Establishing such a

formalism is not sufficient to establish that cues can be false, and therefore that the distinction

between cues and signals is explanatorily irrelevant. Isaac seems to think that having a

semantics in his sense entails the possibility of falsity. But simply assigning a semantics to

a system does not entail that its signs can be false. The fundamental problem of naturalistic

intentionality is determining how signs can have content whose satisfaction conditions do not

obtain. Assigning formal objects to each sign in a system, and calling those formal objects

‘content’, does not in itself ensure that those contents can be false.

12In addition to signals and cues, there are other information-bearing items that do not obviously fall into
either category. Camouflage is a morphological trait designed to prevent receivers achieving their goals. As
such, its physical form is in part explained by considerations of biological function. In this way, camouflage
differs from cues. But camouflage also differs from signals in that it cannot be explained by reference to
coadaptation (at least not when ‘coadaptation’ implies a common evolutionary goal). So my comments in the
main text should not be read as an exhaustive account of the explanatory distinctions relevant for evolutionary
interactions.
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Rejoinder. Let us accept there is an explanatorily relevant distinction between signals

and cues. Nevertheless, it may be objected that Shannon information is sufficient to do the

explanatory work biologists require of signals. Lean (2014) argues that success and failure of

signal-driven behaviour can be attributed to the informational properties of a signal without

appeal to mapping relations. For Lean, the distinction I drew in chapter 1, between mapping

relations borne by signals and correspondence relations borne by cues, is bogus. There is

one kind of relation, and what distinguishes signals is that they can sometimes fail to bear it.

Signals can fail to carry the information it is their function to carry (and this distinguishes

them from cues), but the kind of information they bear is the same as that of cues. This

accounts for the special explanatory role of biological signals.

Response to rejoinder. Teleosemantics provides a definition of falsity that rests on the

universally agreed point that signals have functions, whereas cues do not. Lean believes

this distinction does not entail a distinction in the kind of information a sign bears. He as-

signs explanatory burden to cues and signals by asserting that they carry the same kind of

information, but that signals can sometimes fail to do so. However, this conclusion relies on

a crucial vagueness in the term ‘information’. In Lean’s parlance, a signal failing to carry

information means a token signal failing to bear the requisite correspondence relation. But

the term ‘carrying information’ typically refers to bearing a correlation, which is a statement

at the level of types. Our distinction between correlations, correspondence relations and

mapping relations carefully distinguishes terminology across two levels. But Lean’s term

‘carrying information’ conflates them. As a result, his assertion that signals have the func-

tion of conveying information inherits the same vagueness.13 For a token sign to have the

13Strictly, proper functions are causal effects. A signal cannot have as its proper function to bear a relation
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function of corresponding, there must be a token correspondence relation it is supposed to

bear to its signified. Lean requires that this token correspondence is the same kind of thing

for signals as for cues, in effect denying the grounds of the distinction laid out in chapter 1.

Again, this ignores the fact that signals bear the relations they do in virtue of being produced

in the proper way. If we ignore the sender’s function, signals simply become cues in our

model of the situation. Then they either bear the correspondence relation or do not: there

is no room for falsity. The only way it can be possible for a signal to be subject to a stan-

dard which it can fail to achieve is if there are rules governing Normal performance of its

proper function (see chapter 4). Those rules specify which relation(s) the signal must bear

in order to perform their proper functions Normally. These relations are mappings because

they derive from functional specification of senders and receivers. In contrast, the relations

that characterise cues are correspondences because they are derived from a completely dif-

ferent source: the causal structure of the world irrespective of their receiver. Ignoring this

distinction is only valid when we are ignoring the role of the sender’s design in explanations

of receiver behaviour or success. And while biologists do this some of the time, there are

times when they do not.

(unless it is a relation to a causally downstream event), though it can be required to bear a relation in order to
perform its function in a Normal way (see chapter 4 and Ryder et al. (2013, pp. 37–40)). Lean must therefore
work with a different notion of function than I assume throughout the thesis. I do not think this affects the point
I make here.
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3.6.3 Disanalogy: The analogy between Shannon information and other

mathematical quantities is fallacious

Objection. Shannon information is not like weight. For one thing, the weight capacity of an

elevator is different from the information capacity of a channel. If you put too much weight

in an elevator, it will fail to move or the cable will snap. No analogous thing will occur

with communications channels. Indeed, it is not even sensible to imagine putting too much

information into a channel – such a thing is incoherent.

Response. The objection fails because there is a perfectly coherent notion of transmit-

ting too much information through a channel. Indeed, channel coding is in part a process of

regulating the amount of information transmitted. Good channel coding throttles transmis-

sion, ensuring not too much is sent per unit time. The key to understanding the situation is

to remember that capacity is a rate. It tells how much information per channel usage or per

unit time can be transmitted. When one attempts to transmit at a greater rate, one inevitably

fails to reconstruct the message perfectly.

There are also more familiar issues with transmitting (or in this case receiving) too much

information per unit time. Denial of service attacks occur when an internet service is flooded

with bogus requests, overloading the system and preventing it from dealing with legitimate

operations. Computer systems are rate-limited just as communication channels are, and

malicious actors can jam systems by effectively forcing them to attempt to deal with too

much information at once.

We should understand the problem of attempting to transmit too much information in

terms of functional performance. Transmission rate measures how much functional improve-
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ment one can enjoy by conditioning on signals sent through the channel. Suppose a sender

and receiver acted as though a signal were more accurate than it really was. They might

fail to strategise with respect to noise in the channel. Their behaviour could be construed

as an attempt to transmit too much information through the channel, resulting in imprecise

behaviour. Their behaviour would fail to the extent that attempted transmission exceeds

capacity.

Rejoinder. There is a difference between transmitting too much and attempting to trans-

mit too much. In the elevator case we really do put too much weight in the elevator, and it

collapses. In the channel case we don’t even get to transmit the information, by definition.

Response. We ought to read ‘attempting to transmit too much information’ as analogous

with ‘attempting to lift too much weight’. You can put too much weight in an elevator but

it won’t then function properly. What is being attempted is a certain level of performance.

In both cases, capacity specifications tell you what level of performance you can hope to

achieve. Attempting to exceed this will result in failure.

3.6.4 Priority: semantic information came first. Whatever Shannon is

measuring, it isn’t information

Objection. In everyday parlance, the ‘information’ in a signal refers not to a quantity but to

the identity of the state of affairs that bears a certain relation to it. If anything, it was poor

judgement on Shannon’s part to adopt that term as the name of a mathematical measure. The

original concept INFORMATION really is about the identity of objects (or at least states of

affairs). This concept cannot be chimerical (or at least not for the same reasons SPATIAL

VOLUME and SPATIAL WEIGHT are) because it pre-dates the mathematical definition. The
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mathematical concept (if mathematical measures can be said to be concepts at all) is simply

confusingly misnamed, and would better be called something technical like ‘surprisal’ or

‘statistical content’.

Response. Such a view is not totally at odds with my argument in this chapter. Some-

times it is appropriate to compare mathematical measures with concepts, such as volume,

weight, and temperature, especially in discussions of the conceptual advances that mathe-

matical precision makes possible. What seems to have gone wrong in this case is that the

mathematical definition cannot sharpen the original concept INFORMATION. That concept

was already too vague to be analysed by a single measure. What was required, first, was

a teleosemantic theory to sharpen the concept of information by replacing it with mapping

relations and correspondence relations, followed by a mathematisation of teleosemantics to

enable quantification of those relations. Perhaps the irrelevance claim is a consequence of

the accidental fact that communication theory emerged before teleosemantics.

Whatever the reason, I maintain that distinguishing the state of affairs that a signal is

about from the quantity of information in the signal is illicit. The irrelevance claim states

that quantities have nothing to do with referents. Such a claim cannot be true. Quantities

of information involve referents in the same way that quantities of weight involve planetary

bodies with respect to which weight is measured.

3.7 Conclusion

What can communication theory say about content? A great deal, if we take sender-receiver

teleosemantics seriously. Informational measurements in communication systems are given
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significance by the proper functions of signallers. Those measures quantify the accuracy of

mapping relations.

The relevance of communication theory for the philosophical problem of semantic con-

tent has been obscured. The irrelevance claim is widespread, superficially plausible, and en-

tails a distinction between Shannon information and semantic information. Once we ground

information in function, we can better appreciate the relationship between communication

theory and teleosemantics.



Chapter 4

Mapping relations

4.1 Introduction

How can appealing to the content of signals help explain behaviour? Why should this kind

of explanation be preferred to a purely mechanical description of a signalling system?

The usual approach to these questions, and the approach I shall endorse, is to show how

appealing to content can offer greater explanatory purchase than mechanical descriptions.

Explanatory purchase is a fundamental aspect of philosophical approaches to representation

(Shea, 2018, p. 205ff), (Ramsey, 2007, p. 27). The problem for the naturalist is to define a

naturalistically respectable category that scientists can appeal to in explaining behaviour, and

which enables an improvement over mechanical explanation. Since content is metaphysically

suspicious, an increase in explanatory purchase over purely mechanistic explanation would

help to provide justification for attributing content to physical vehicles. The greater the

explanatory purchase, the greater the motivation for accepting content as part of the natural

order.

Understanding how content offers explanatory purchase requires understanding its ex-

planatory role. According to teleosemantics, the relevant explanatory role should be under-

stood in terms of a certain kind of relation that may be borne between a signal and its truth

condition. When this relation holds, the signal can aid the success of its receiver in perform-

ing its proper function. When the relation fails to hold, the signal cannot aid success in this

132
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way. Typically, when the relation does not hold, the receiver will fail; any success it enjoys

as a consequence of conditioning its behaviour on the signal will be accidental. Relations

that play this kind of explanatory role are called mapping relations.

This chapter will spell out in detail the pattern of explanation just outlined. Mapping

relations are characterised by the role they play in explanations of successful performance of

a proper function, and my aim in this chapter is to treat interventionism as an explanatory

framework for this kind of explanation. Since the explanations provided by interventionism

are couched in terms of causal models, it is necessary to understand how proper functions

can be represented in those models. I begin in section 4.2 by introducing interventionism

and making a general point: relations have an explanatory role to play in causal models. In

section 4.3 I translate key technical terms from teleosemantic theory into the language of

causal models. These terms are required for the definition of mapping relations. Finally, in

section 4.4 I define mapping relations and outline their special explanatory role.

4.2 How relations explain
4.2.1 Motivation: worries about representational explanation

In the philosophy of cognitive science, there is a worry that representational explanation

is just a gloss on underlying mechanistic explanations (Chemero, 2009; Hutto and Myin,

2013).1 The thought is that mechanisms provide privileged explanations. On this view,

1It is not clear to me whether philosophers closely associated with contemporary accounts of mechanistic
explanation, such as Machamer et al. (2000) and Craver and Bechtel (2007), would agree with my arguments
in this section. The ecumenical spirit of the following quote gives reason to think that they might: “There may
be non-mechanistic forms of explanation (for example, mathematical, geometrical, or intentional) that have
different norms, and for which talk of mechanistic detail may be wholly inappropriate.” (Craver and Kaplan,
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describing inner states as standing for external states is not a literal scientific posit but con-

venient shorthand for an overall causal picture that characterises agential behaviour solely in

terms of causal inputs, transformations, and outputs. A similar threat to representationalism

is posed by the alternative dynamical systems approach (Gelder, 1998; Meyer, 2018). In-

stead of appealing to underlying causal interactions between objects and properties, dynami-

cal explanations draw on equations that describe how properties of systems (and sometimes

also relations between aspects of systems) change over time. For example, the Haken-Kelso-

Bunz (HKB) model provides a dynamical explanation of human finger-wagging behaviour

(Meyer, 2018). At the heart of the model is a differential equation2 that describes how the

relative phase of finger movement changes over time. Relative phase is a property of finger-

wagging behaviour: hold up both hands and move your index fingers left and right; they will

either both go left/right at the same time (relative phase of zero), or one will move left while

the other moves right (relative phase of 180°). As the speed of finger-wagging increases,

subjects spontaneously transition from in-phase to anti-phase movements. The dynamical

equation at the heart of the HKB model describes this system, and predicts that spontaneous

switching behaviour. Proponents of the dynamical systems approach to cognition hope that

many other kinds of behaviour can be described in a similar way.

If either (or both) of the mechanistic and dynamical views are on track, the point applies

to biological signals too. The best candidates for contentful states in natural science are

cognitive states. If they lost their status as contentful, it is likely that simpler signalling sys-

2018, n.2 p.2).
2A differential equation describes how a property of a system changes with respect to another property. In

dynamical systems models, the property with respect to which features of the system change is time.
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tems would soon follow.3 Explanations in terms of content would be considered shorthand

for underlying mechanical and/or dynamical explanations. Focusing just on the mechanistic

alternative, since appeal to mechanisms – objects, processes and properties – can do the req-

uisite explanatory work, we seem to lose the incentive for positing representational content.

And since there are metaphysical worries about content – especially given the possibility of

falsity, cases where the content of a representation does not obtain – it would seem best to

dispense with it.

In order to assuage this worry, teleosemantics defines content in terms of a certain kind of

explanatory relation. The relation is borne between a signal and a world affair that influences

the success of the signal’s receiver. To spell this out, we must first look at how relational

explanation works in general. How can an explanation of the behaviour of a causal system

consistently and literally appeal to relations? One problem in answering this question is

that there is no consensus theory of explanation (Woodward, 2019, §7.3). Fortunately, one

contemporary approach enjoying real success is causal modelling, spearheaded by Pearl

(2000) and Woodward (2003). Woodward’s account of explanation suits our problem well,

because we have already chosen to represent signalling interactions using causal models.

This section introduces his account and applies it to a certain kind of relation-involving

explanation. The following sections apply it to the teleosemantic theory of representation.

3It is admittedly conceivable that someone might claim biological signals are more securely contentful
than cognitive states. One could argue teleosemantics is appropriate in the biological case because senders,
receivers and proper functions can be readily identified, whereas cognitive/neural states are not so clear cut.
Rosa Cao (2012, 2014) argues that the neural case is trickier than one might think.
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4.2.2 Interventionism

Interventionism is an account of causal explanation (Woodward, 2003). It gives conditions

under which an object or process X can be said to cause, or figure in a causal explanation

of, an object or process Y . Those conditions are expressed in terms of the concept of an in-

tervention. An intervention is a hypothetical experiment whereby a scientist ‘takes control’

of X , setting its value and breaking upstream causal connections. An intervention on X is

written X̂ .

Roughly, interventionism interprets ‘X is a cause of Y ’ as ‘interventions on X system-

atically change Y , given certain background conditions N’. Suppose for example X is the

temperature of a container of water, Y is the phase of the water (solid/liquid/gas), and N is

the pressure inside the container. For normal atmospheric pressure, the container’s temper-

ature can be a cause of the water’s becoming a gas. Intervening on X , increasing it beyond

100 degrees Celsius (by heating the container, for instance), would lead to the value of Y

being ‘gas’. Setting X to between 0 and 100 Celsius would lead to Y being a different value,

‘liquid’, while setting it even lower would lead to the value ‘solid’. So the first part of the

interventionist interpretation of ‘X causes Y ’, that interventions on X systematically change

Y , holds. The second part adds the caveat that the relationship need only hold under certain

background conditions. This allows for the fact that the relationship between X and Y may

be distorted, or disappear altogether, under different values of N. For example, different

pressures alter the way in which temperature affects water phase. At low enough pressure, it

is not possible to set Y to ‘liquid’, no matter what the value of X .

Background conditions affect causal relationships. By constraining causal explanations

to within certain ranges of values those background conditions (N) can take, interventionism
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Figure 4.1: A simple model of the basic interventionist account. The account states that ‘X
is a cause of Y ’ means ‘interventions on X systematically change Y , given certain background
conditions N’. Example: X is the temperature of a container of water, Y is the water’s phase
(solid, liquid or gas), and N is the pressure. Since, given certain pressures, intervening on the
container’s temperature changes the water’s phase, we can cite the temperature in a causal
explanation of the phase.

mandates the appeal to upstream variables (X) in explaining causal effects (Y ). Figure 4.1

depicts a basic relationship between cause, effect, and background condition.

The interventionist analysis allows explanations that describe certain values of X as

causes of certain values of Y , as well as explanations that simply describe X as a cause of Y .

As an example of the first kind of explanation, the container’s temperature being above 100

degrees Celsius is a cause of the water’s becoming a gas. As an example of the second kind

of explanation, the container’s temperature is a cause of the water’s phase. Although Wood-

ward’s approach emphasises the second – variables causing variables – it will sometimes be

useful to speak in terms of the first – values causing values.

Interesting properties of causal relationships can be investigated using the mathematical

toolkit this framework enables. For example, Griffiths et al. (2015) argue that I(X̂ ,Y ), the

mutual information between interventions on X and Y , is a good measure of causal speci-

ficity, the extent to which X is a specific cause of Y . Intuitively, I(X̂ ,Y ) quantifies how much

control an intervention on X affords over Y . Greater control is a reasonable way to capture

the informal concept of causal specificity. In the example of water, extremely low pressures
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reduce the amount of control X has over Y by reducing the number of different values Y can

take. This in general reduces I(X̂ ,Y ), and seems to capture the intuition that the hypothetical

scientist has less ‘control’ over the phase of water because they are no longer able to make

it become liquid. Not all ways of reducing control over Y involve removing one of its states

from the space of possible values. But that is one particularly vivid way to illustrate the idea.

Let us see how relations can do explanatory work by adopting this framework.4

4.2.3 Relational explanation

What do relational explanations look like? Consider a machine that randomly selects two

socks from the washing pile and pairs them iff they match. Otherwise they are returned to

the pile, which is then stirred. The system can be modelled as per figure 4.2.

Suppose the machine picks two matching socks. It will pair them, and we can explain

why they end up paired by saying that sock 1 matches sock 2. If we take the verb matches

to describe a matching relation, we can express that relation as per figure 4.2. If instead the

machine returns the socks to the pile, the corresponding explanation for this outcome may

cite the lack of a match.

What is useful about this explanation is that it does not need to cite individual properties

of socks. In particular, it need not state the pattern on each sock individually before deducing

that they match. A more fine grained explanation would state the pattern on each sock before

comparing them and pronouncing them a match. Descriptions like this are perhaps suited to

4Other explanatory frameworks may well have an easier time encompassing relational explanation. For
example, the statistical relevance approach assigns explanatory relevance on the basis of conditionally depen-
dent relationships (Woodward, 2019, §3). This does not require that the features whose dependence grounds
explanation be one-place properties. If this is right, relational explanation is in even better shape than I argue
for here.
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Figure 4.2: A causal model representing the sock-sorting machine. The variable Pair? takes
value PAIRED if the socks match, and REJECTED otherwise. Explaining why the variable
Pair? takes a particular value on a given occasion, we can appeal to the presence or absence
of a matching relation between the socks.

tracking the machine’s internal workings, but they are not a necessary part of an acceptable

explanation of the outcome. Relational explanations are useful because they abstract away

from individual properties.

A much simpler but more powerful version of this concept is a logical AND gate (figure

4.3). Suppose Out reads YES after one operation. We can explain this by saying both In1 and

In2 were YES. However, this looks like the fine-grained property explanation rather than the

efficient relational one. AND gates do not accept two NOs, so the relation we appeal to can

only be both-YES, which seems to be nothing but a restatement of two one-place properties.

We get a little explanatory purchase, however, when Out reads NO: we can say that the inputs

were not both yes, which abstracts away from the three specific circumstances in which this

condition holds (NO-NO, YES-NO, NO-YES).

For a better example, consider the XNOR gate. It has the same causal model as other

binary logic gates, but accepts both YES-YES and NO-NO. Explaining the operation of the

XNOR gate is easier by appeal to the sameness of the inputs. Logical sameness is a relation

that affords modest explanatory purchase, just as Pattern sameness does for the sock-sorting



Chapter 4. Mapping relations 140

Figure 4.3: A causal model representing a binary logic gate.

machine.

Relations between nodes in causal models provide explanatory purchase. Logic gates are

perhaps the simplest example. Their outputs are the result of relations between the inputs.

XNOR does not care what its inputs are, only that they are the same. Abstracting away from

properties to produce causal consequences as a result of relations is what makes logic gates

useful.

A purist may object that relational explanation is at best shorthand, at worst misleading.

Logic gates operate by comparing inputs in a sense, but describing them as such masks the

whole truth. It makes it seem as though the relation itself were doing causal work. Since this

cannot literally be the case, the gate must consist of an intricate causal structure which, ap-

propriately hooked up to inputs and outputs, implements a logical operation. What happens

inside the gate is causal and is explained solely by reference to objects and their properties.

Consider, for example, the logical AND gate depicted in figure 4.4 as a domino chain. Its

layout ensures the Out chain falls iff both In chains fall roughly simultaneously. There is

no component within the gate that compares the inputs, there is only a causal structure that

mimics such a comparison.

This objection comes in two flavours. First, the purist could be saying that relational
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Figure 4.4: A logical AND-gate built using dominoes (from think-maths.co.uk). If neither
in-chain is knocked down, the out-chain remains standing. If the first (uppermost) in-chain
alone is knocked down, it interrupts itself and the out-chain remains standing. If the second
in-chain alone is knocked down, it does not connect to the out-chain, which remains standing.
If both in-chains are knocked down, the second interrupts the first’s interruption, leaving the
first chain free to knock down the out-chain.

https://bit.ly/2pvfX7Y
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explanation is a pseudo-explanation – it is (say) metaphorical or fictional rather than literal.

Second, the purist could be saying that relational explanation is appropriate (literal) at one

level, but that that level of explanation is not privileged. On this view, mechanistic (or

dynamical) explanation has priority, perhaps because it has more predictive power, applies

in a wider class of situations, or possesses some other desirable feature of explanation.

The first reading is more radical and the second is conciliatory but neither, I think, will

stand. The first reading requires that objects and properties be real while relations are not;

it is then better to dispense with talk of relations altogether in a completed science. But the

examples of the sock-sorting machine and the logic gate show that we have no reason to

treat relations as unreal. In these toy cases, relations are collections of, or abstractions from,

pairs of one-place properties. This suggests that if properties are metaphysically secure, so

are relations. To the extent we have reason to believe one-place properties are real, we have

reason to believe relations are real too.

What the second reading requires is an account of privileged explanation, a reason to

believe mechanical explanations have elite status. But it is just not clear why mechanical

explanations should be universally privileged. Indeed, there is plenty of scepticism about

the idea that any single kind of scientific explanation, whether mechanistic or otherwise,

is going to be universally privileged (Woodward, 2019, §7.3) (Woody, 2015). Woody, for

example, has recently argued that “the explanations that are generated and endorsed across

modern scientific communities are diverse and pluralistic, rather than homogeneous, in kind”

(Woody, 2015, p. 80). There are certainly contexts in which mechanical explanation is more

valuable and fiercely sought. Whole disciplines – certain areas of physics and chemistry,

for example – perhaps employ relational explanation as a shorthand or stop-gap until the
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mechanical story is discovered. But the idea that scientific explanation tout court is beholden

to mechanism is grossly unmotivated.

Admittedly, mechanistic analysis sometimes offers further benefits to the scientist. Iden-

tifying mechanisms helps scientists do two things that are more difficult in their absence:

prediction and control. However, knowing a mechanism is not always necessary for predic-

tion or control. Having observed my sock-sorter over a period of operation, I can predict its

behaviour upon being presented with a new pair of socks. I can also control its behaviour:

supposing I want it to always pair socks, I can ensure that any time a sock is placed in the

first slot, the sock placed in the second slot matches it.5 These abilities are less secure when

the mechanism is unknown. There may be some principled limit on the accuracy of the

machine’s sock-scanner, such that two non-matching socks are mistakenly paired if they are

similar enough. Knowing these limits would improve both prediction and control, and know-

ing the mechanism is one way to know the limits. Nonetheless, explanation, prediction and

control can still go on without knowledge of the mechanism.

4.2.4 Relational explanation and causal role

I am contrasting mechanical with relational explanation. The term ‘causal’ is still unassigned.

It is typical to treat causal as synonymous with mechanical, but there is good reason not to

follow that practice here. If we follow Woodward (2003), causal explanation ought to be

understood by reference to causal models. I have argued that these models support relational

5To anticipate, there are at least some cases where knowing the relevant mapping relations aids in prediction
and control of a sender-receiver system: von Frisch was able to predict the flights of honeybee workers in his
observation hives after watching the waggle dance; had he possessed sophisticated fake-bee technology, he
might have been able to control those flights. To do either of these things, he did not need to know the
mechanism by which receivers decode the dance.
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explanation too. I will continue to use causal explanation to mean explanation understood

with respect to causal models, which (I claim) includes both mechanical and relational ex-

planations.

But do relations have a causal role? Let me stipulate that in order to have a causal role,

an object or property must have a position within a causal model such that intervening on it

affects something downstream. In Woodward’s account of causal explanation, interventions

are acts carried out on a single node – a single variable. So only things associated with single

nodes can have causal roles, on my understanding of the term.

One way to establish the claim that relations have explanatory roles in causal models

would be to argue they do indeed have causal roles. The thought would be that sock-pairers

and logic gates are the means by which relations gain causal efficacy. On this view, the rela-

tion Pattern sameness really does cause the socks to be paired, and the relation Logical same-

ness causes the output of the XNOR gate to be YES. Two recent articles, by Gładziejewski

and Miłkowski (2017) and Meyer (2018), sharpen this thought by treating relations as vari-

ables that can be intervened on. I want to explore their suggestions, in part to contrast them

with my own account, but also to show the various ways in which relational explanation can

be supported.

Gładziejewski and Miłkowski (2017) argue that relations have causal roles (“causal rele-

vance” in their terminology) via the claim that it is possible to intervene on relations. Rather

than treating relations as features of multiple nodes, they propose treating a certain kind of

structural resemblance relation as a single node X . Intervening on X changes a downstream

node Y (which need not itself be a relation). The authors use this account to argue for the

causal relevance of representational relations. They favour a structural resemblance account
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of the representation relation, on which ‘S-representations’ represent in part by being struc-

turally similar to their representational content:

For similarity to cause success, interventions into the value of X (which corre-
sponds to the degree of structural similarity between the representational vehi-
cle and what it represents) should result in systematic changes in the value of Y
(which corresponds to the degree of success of the mechanism that makes use
of an S-representation in performing its mechanistic function or capacity).

Gładziejewski and Miłkowski (2017, p. 343)

This scenario corresponds to the basic interventionist pattern depicted in figure 4.1, let-

ting X be a relation of similarity between vehicle and content, Y degree of success of the

agent harbouring the representation, and N any relevant background conditions (not men-

tioned in the quote).

Meyer (2018) makes a similar claim by appealing to relations of a different kind. For

him, the interventionist diagnostic for causal explanation is not restricted to causal models.

Any model in which altering one variable leads to changes in another can be interpreted

causally. Meyer is particularly concerned with dynamical models:

If we can intervene on the values of variables in a dynamical model, and see
changes in the value of another variable, then (on the interventionist account)
we have exposed a causal relationship.

Meyer (2018, p. 12)

Meyer draws on the HKB model as an example. That dynamical model incorporates the

following differential equation:

dϕ
dt

=−asinϕ −2bsin2ϕ (4.1)

In equation (4.1), b
a is a feature of the finger-wagging system known as the coupling ratio,
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and ϕ is the relative phase introduced earlier. Both terms represent relations, and intervening

on b
a changes the value of ϕ . According to Meyer (2018, p. 2), applying the interventionist

diagnostic “even-handedly” entails treating b
a as a cause of ϕ .

My own view is weaker than those of Gładziejewski and Miłkowski (2017) and Meyer

(2018). I propose we reserve nodes in causal models for objects and their properties. Re-

lations therefore do not have causal roles. But they gain an explanatory role as a result of

patterns of invariance in multiple interventions. Let me explain.

Combinations of interventions on causes reveal invariances in effects. Such invariances

may be attributable to relations. For example, intervening on both inputs to the XNOR gate,

setting them both to the same value (whether both YES or both NO), produces the same

output, YES. A relation has an explanatory role when combinations of interventions that

instantiate it produce the same outcome. Logic gates and sock-pairing machines are simple

examples of a general phenomenon: relations are abstractions of collections of one-place

properties, and the explanatory role of relations derives from invariances in causal affairs

downstream of those collections.

It is not clear how much violence is done to the concept of an intervention. Traditionally,

upstream variables other than the one being intervened on a considered background condi-

tions, as per figure 4.1. I am proposing we consider the results of intervening on multiple

nodes at once, in effect treating what would otherwise be considered a background condi-

tion as a potential cause. I do not think this invalidates my account. Woodward himself

dedicates a chapter to a relevantly similar notion of invariance (Woodward, 2003, §6). He is

concerned with invariance of generalisations, in the sense that they continue to hold under
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certain interventions.6 In any case, if Gładziejewski and Miłkowski (2017) can treat rela-

tions as nodes, and Meyer (2018) can appeal to interventions outside causal models, then

appealing to patterns in the effects of multiple interventions is not overly radical.

The fact that there are patterns of invariance in sets of interventions underpins the ex-

planatory purchase of relations. Appealing to a relation of logical sameness allows us to

predict and explain the output of the XNOR gate without specifying the particular input val-

ues. Of course, the notion of explanatory purchase has not yet been rigorised. But it seems

clear to me that if an appeal to relations allows you to ignore underlying properties and yet

still make accurate predictions, there is a gain in explanatory purchase. For consider a gate

that was able to produce four different outputs, and did so depending on the four different

combinations of inputs. There could be no descriptive gain in appealing to logical sameness,

because the two different conditions under which the inputs are the same lead to two differ-

ent outputs. It seems that when there is a one-to-one correspondence between combinations

of inputs and possible outputs, there is no point in grouping sets of inputs together. When

many inputs produce the same output, however, that is a pattern of invariance; often, as in

the case of the XNOR gate, there may be a relation or relations that explain it.7

Shea (2018, §2.3) provides similar justification for appealing to representational content

in cognitive science. He accepts that descriptions of system behaviour can be given in purely

6One might tentatively suggest that Woodward’s notion of invariance is related to my own as follows:
the generalisation about how the sock-sorting machine works (matching socks lead to the Pair variable being
PAIRED) is invariant (Woodward’s sense) under interventions on either of the two inputs to the extent that Pair
changes when the intervention changes the relation and does not change (is invariant in my sense) when the
intervention does not change the relation. Spelling this out in further detail must wait for future work.

7Artificial neural networks operate on a similar principle. Edge detectors, for example, do not simply
aggregate the one-place properties of pixels that constitute the edge. They exploit the spatial relations between
pixels. That is what an edge is, in visual data: a relational configuration of pixels. Any system that can
recognise the edge given access only to the pixels is dealing with relational features.
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internalist terms; that is, descriptions that appeal only to causal properties. Nevertheless,

there are significant categories of behaviour whose description can only be given by reference

to external features of the environment. Shea claims most explananda in cognitive science

are partly externalist. These include “explaining a system’s reaction to and distal effects in

its environment” (Shea, 2018, p. 231). The general class of abilities Shea demarcates that

have this externalist feature he calls task functions. For our purposes, task functions share

with proper functions the feature that distal properties and processes in the environment can

affect their successful performance (see section 4.3). It is this feature, pervasive in both

biology and cognitive science, that merits drawing on extrinsic properties in constructing the

explanans. The account given of the explanatory role of mapping relations in section 4.4 is

in broadly the same spirit.

A few final comments are in order before moving on. First, given the definition of causal

role suggested above, we can characterise the less radical strand of purism as the claim

that causal roles are the privileged explanatory roles. It is this claim I reject. Second, the

account of Gładziejewski and Miłkowski (2017) supports my claim a fortiori. I claim that

relations can play explanatory roles in causal models. I argued for the claim by outlining

an explanatory role derived from patterns of invariance in interventions. However, a simpler

way of playing an explanatory role in a causal model is just to have a causal role. And

Gładziejewski and Miłkowski (2017) claim relations do have causal roles. We may disagree

on the particulars, but we are at least unified against purism. Third, Meyer (2018) raises

the possibility of applying interventionist criteria in non-causal models. Pursuing this line

might lead to even stronger consilience between my own view and that of Gładziejewski and

Miłkowski (2017): perhaps there is an appropriate kind of model in which relations appear
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such that they can be intervened on. Currently we differ in opinion over whether causal

models satisfy that need, but we might agree over another kind of model.

In sum, whether or not relations play a causal role, they play explanatory roles in causal

models. Insofar as the causal modelling approach is a good account of explanation, there is

an explanatory role for relations in natural science.

4.2.5 When are relations ‘real’?

A sock sorter could be built that pairs any desired combination of socks. Suppose there are

four possible sock patterns, Clouds, Flowers, Ducks and Fish. Assuming a one-to-one corre-

spondence between left and right socks is required, there are 24 possible relations that a sock

sorter could instantiate; left-foot socks with Clouds could be paired with right-foot socks

with Ducks, and so on. Some of these unorthodox relations are listed in table 4.1. We tend to

think, however, that the relation of Pattern sameness – hereafter the matching relation – is

more ‘real’ or ‘natural’ than a relation artificially induced by an unusual machine. Why? On

what grounds can we trust the intuition that the 23 ‘gruesome’ sock-sorters do not respect a

real or natural relation?

The intuition can be bolstered in two ways. First, it is easier to build a sock-sorter that re-

spects the matching relation. If we say that relations are real to the extent they are exploitable,

and that a measure of exploitability is the relative ease of building a machine that respects

the relation, then the matching relation is more real than the others. Second, the matching

relation is more readibly extensible. This is really a consequence of the first assertion. We

will consider them in turn.

The matching relation is more readily exploitable. Suppose you were tasked with
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Left sock Right sock,
matching
relation

Right sock,
gruesome
relation 1

Right sock,
gruesome
relation 2

...

Clouds Clouds Ducks Clouds ...
Flowers Flowers Fish Fish ...
Ducks Ducks Clouds Ducks ...
Fish Fish Flowers Flowers ...

Table 4.1: Each right-sock column represents a possible sock-sorting machine. The standard
machine is described by the first right-sock column: it matches socks with a cloud pattern
to socks with a cloud pattern, socks with a flower pattern to socks with a flower pattern, and
so on. This machine respects the matching relation between socks. Other machines could
be built that pair socks in unusual ways. These do not seem to respect any ‘real’ or ‘natural’
relation; the relations they respect are gruesome or artificial (though some of the pairs may
in fact match, as with gruesome relation 2). The main text discusses the intuitions behind the
claim that the matching relation is more real or natural than the other possible relations.

building a gruesome machine. Socks are to be paired according to one of the 23 unnatural

relations, two of which are displayed in table 4.1. How would you do it? We might imagine a

scanner in each in-slot, feeding data into a sock-recognition program. The left-sock program

processes the scanned image and outputs a string of 1s and 0s representing whichever pattern

was detected; the right-sock program does the same. A central processor then takes the two

strings and checks whether they conform to the desired relation (table 4.2).

The point is that the machine must implement an intermediate step of ‘recognising’ each

pattern, translating it into its own inner language before engaging the lookup table to confirm

the pair. One good thing about this system architecture is that the lookup table can be easily

changed. The same machine can instantiate many different relations just by changing one

small part of it and keeping all the rest (scanners, sock-recognition modules) the same. But

the price of this flexibility is inefficiency. The machine must explicitly recognise each sock-
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Left sock pattern / code Right sock pattern / code
Clouds / 00 Ducks / 10
Flowers / 01 Fish / 11
Ducks / 10 Clouds / 00
Fish / 11 Flowers / 01

Table 4.2: A gruesome sock-sorter respects an unnatural relation by explicitly recognising
each sock pattern, translating it into an inner code, and consulting a lookup table to determine
whether the two socks ‘match’. The system architecture is flexible but inefficient: flexible
because different unnatural relations can be respected simply by swapping out the lookup
table for another and keeping the rest of the system the same; inefficient because it requires
explicit recognition of each pattern. The main text argues that the more natural matching
relation (Clouds with Clouds, Flowers with Flowers etc) can be respected without the need
for explicit recognition, and that this fact contributes to the intuition that this relation is
indeed more ‘real’ or ‘natural’ than its gruesome alternatives.

pattern in order to instantiate any relation of which that pattern is a relatum. Its laborious

explicitness goes hand-in-hand with its general-purpose scheme: it is because it derives

binary strings in its left- and right-sock modules that its lookup table can be replaced.

Why do I say a machine that respects the matching relation is easier to build? For one

thing, the machine need not explicitly ‘recognise’ a pattern, in the sense of translating it into

an inner string, in order to test whether it matches another pattern. Here are two ways to test

for a match without explicit recognition:

1. The system places the two socks together so they are physically contiguous, scans

them as if they were one single piece of fabric, and engages a subroutine that attempts

to distinguish them based on that image. The subroutine has an accuracy threshold: if

it cannot reliably distinguish the location and orientation of each sock, that is probably

because the patterns overlap in such a way as to make them indistinguishable. That can

only happen when socks bear the same pattern. Clouds next to Ducks would be easy
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to distinguish. Crucially, this does not require that the subroutine be able to recognise

or identify any individual pattern. It need only tell when one pattern ends and another

begins.

2. The system takes a picture of each sock and tries to digitally manipulate one picture to

look like the other. Again, there is a threshold: if the number of computational steps

required to transmute one image into the other is too large, that is an indication that

the images are significantly different, and so the socks very likely do not match.

There are other ways to implement sameness-testing than those just described. The point

does not depend on the details, except insofar as it is possible to test for sameness of pattern

without explicitly recognising the pattern. (Explicit recognition is, of course, another way of

doing it, but that would afford no improvement in efficiency over the gruesome machines.)

Perhaps there will be scenarios in which explicit recognition is as easy as any viable means

of sameness-testing. But I suspect that in the majority of cases sameness-testing is easier to

implement, and that this fact is intimately related to our intuition that the matching relation

is somehow more real or natural than the gruesome relations our machine could in principle

respect.

The matching relation is more readily extensible. Suppose you buy a new pair of

socks. If your machine matches socks without explicitly recognising their pattern, it is per-

haps already capable of matching your new pair. Implementations of this kind have a certain

inherent extensibility. As a result of the fact that they do not recognise individual patterns,

they are able to function correctly when presented with novel patterns. In contrast, the ma-

chine that uses a lookup table relies on being able to convert scanned images of socks into

proprietary binary strings. Buying a new pair would require reprogramming the machine (or
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at least adding a new module). This all contributes to the intuition that your new socks bear

the same relation to each other as each of your old pairs did – the matching relation. It is

because the machine exploits this pattern that it is readily extensible to new manifestations

of it.

A significant corollary is that the explicit-recognition machine does not exploit the match-

ing relation even when its lookup table is organised so that it does only match same-patterned

socks. It does not exploit the relation because it does not save any effort in its operation. It

would be just as effortful to instantiate a gruesome relation.

Another way to see the same point is to ask a question that will become pertinent for

mapping relations. Which interventions in the left-foot sock correspond to interventions

in the right-foot sock for the purposes of preserving a certain outcome? For the lookup-

table machine the answer is contained in the lookup table. Supposing the lookup table is

as per table 4.2, setting the left sock to Ducks requires setting the right sock to Clouds in

order to obtain the outcome PAIRED. Any intervention on the left sock has a corresponding

intervention on the right sock that would preserve that outcome. In general, interventions

on the left sock set it to a value described by a cell in the left-hand column of the table.

The corresponding intervention on the right sock is picked out by the cell in the right-hand

column of the same row. The outcome-preserving correspondence between interventions –

call it an intervention mapping – is easily described: set the value of the right sock to the

cell in the same row of the lookup table as the left sock’s value. This specification does not

uniquely pick out actual interventions. Every possible intervention mapping is picked out

by this rule, because different lookup tables entail different outcome-preserving pairings. Of

course, for a given lookup table, the rule uniquely specifies an intervention mapping. But
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changing the relevant intervention mapping is as simple as changing the lookup table.

By contrast, there is a privileged intervention mapping in the case of the matching-

relation machine. The intervention on one sock should be mapped to the same intervention

on the other: setting the value of left sock to Clouds requires setting the value of right sock

to Clouds, and so on. Why is this rule privileged? Because the machine is not capable of

supporting any other. Talking of real or natural relations implies a kind of simplicity. The

matching-relation machine is simpler than the explicit-recognition machine. Its simplicity

constrains which intervention mappings could possibly track its behaviour.

What is more, the matching-relation machine’s intervention mapping is extensible. The

intervention that sets left sock to a novel value, say Pyramids, is matched by an equivalent

intervention on the right sock. This is so even if this is the first time the machine has en-

countered a sock with a pyramid pattern. Intervention mappings that are specified by lookup

tables are restricted by the finite, predetermined entries in those tables. If a new pair of socks

is to enter into the intervention mapping, it must be explicitly introduced by means of ex-

tension (or replacement) of the lookup table. A lookup-table machine does not respect the

matching relation because it does not support the outcome-preserving intervention mapping

in the right way.

4.2.6 Summary

Relations have an explanatory role in causal models. Explanatory purchase increases to the

extent that the same outcome is explained by multiple combinations of causal antecedents.

These combinations of antecedents are abstractions from properties – they are relations. Re-

lations are more real or natural to the extent that they can be more readily exploited, and to
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the extent that this exploitation is more readily extended to new instances of the relation.

In order to apply this account to mapping relations, it will first be necessary to lay down

the basic features of teleosemantics in the language of causal models. The next section intro-

duces those features – centred on the concepts of proper function and Normal explanation –

and suggests ways to understand them in terms of the interventionist framework.

4.3 Towards mapping relations: proper function

in causal models

My goal in this section is to demonstrate how core features of teleosemantic theory (proper

function, Normal explanation, Normal conditions, and so on) can be represented in causal

models. The full definitions of these terms are given by Millikan (1984, §§1-2). It is not

possible to capture every detail of each definition. Nonetheless, I aim to capture all details

relevant for this chapter’s central claim: that mapping relations have a secure explanatory

role in natural science, where this explanatory role can be understood with regard to the in-

terventionist framework. I will therefore introduce simplified causal models that capture the

central features of each concept, building up to the characterisation of mapping relations in

the next section. It will be instructive to see how relations of different kinds play explana-

tory roles with regard to proper functions, and to compare and contrast these roles with the

purportedly special role of mapping relations.
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4.3.1 Selection

A proper function is an outcome that an item was selected for bringing about. For example,

the mammalian heart was selected for circulating oxygenated blood around the body. Past

instances of hearts that in fact circulated oxygenated blood thereby contributed to the pro-

duction of future hearts, through the inheritance of genes that contribute to the development

of hearts. The selection process responsible for hearts is evolutionary and acts on genes.

But selection processes need not be genetic. They need not act on genes over evolutionary

time. What is required is just that there be recurrence of an object of a given type, and this

recurrence is in part due to the causal effects of past instances of objects of that type. This ab-

stract schema characterises trial-and-error learning and cultural selection too. The left-hand

column of table 4.3 lists objects that have proper functions as a consequence of different

kinds of selection.

It is not just objects that can possess proper functions, but also processes like behaviours.

Processes have causal effects, and can be selected due to these effects. Again, different kinds

of selection can give rise to processes with proper functions. The right-hand column of table

4.3 lists examples of processes that have proper functions as a consequence of selection.

Selection is the non-accidental differential recurrence of entities. Items of a type recur

– are either reproduced or reconstructed, or brought about by some other means – because

of a property or properties they possess. Items with proper functions are selected not (just)

because of properties they bear, but because of causal effects they have.
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Object Process
Genetic selection Organs e.g. Mammalian heart Genetically specified be-

haviours e.g. Waggle dance
Trial-and-error
learning

Novel artefacts created acci-
dentally and retained for their
usefulness

Conditioned behaviours e.g.
Pressing a lever to obtain food

Cultural selection Socially learned artefacts e.g.
Polynesian outrigger canoes

Socially learned behaviours
e.g. Human natural language

Table 4.3: Examples of proper functions arising from selection processes of different types.
Rows denote different selection processes. Columns denote different ontological categories.
Many artefacts and behaviours may be subject to more than one kind of selection process.

Figure 4.5: If X has as a proper function to bring about a particular value of Y , then Y must
be causally downstream of X . In the simplest case, Y is immediately causally downstream
of X . Example: a proper function of the mammalian heart X is to circulate blood Y . Values
of X are different states the heart could be in, i.e. motionless, pumping, pumping erratically
etc. Values of Y are different possible blood dynamics in the circulatory system i.e. static,
circulating, circulating erratically.

4.3.2 Direct proper function

A direct proper function of an item X is a causal effect items of that type were selected

to have. We will represent this as a value yi of a variable Y causally downstream of X .8 In

causal models, causally connected items (variables) are represented as nodes with an arrow

between them, as in figure 4.5.

In figure 4.5, X is a node that has causal effect Y . Y can take values y1, y2, ... and the

value it takes depends only on the values of nodes that are causally upstream of it (in this

case, X). Suppose X has as a proper function to bring about a particular value of Y , say y2.

8It seems to me that the ontological type of a proper function is a relation between X and Y . For conve-
nience, however, I will often speak of the relevant value of Y , here y2, as being the proper function of X .
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Figure 4.6: If successfully selected ancestors of X performed y2 historically by going into
state x2, this forms part of the Normal explanation for how X performs y2. Example: the heart
circulates oxygenated blood (y2) by going into the ‘pumping state’ x2 (i.e. by pumping).
Intervening on X and setting it to x1, ‘not pumping’, would lead to oxygenated blood not
circulating, y1.

Then we can write F(X) = y2. More verbosely, F(X) =< 0, 1, 0, ...,0 > signifying that y2,

and not any of the other values of Y , is the proper function of X .

4.3.3 Normal explanation and Normal conditions

A Normal explanation says how members of the type X have performed y2 historically. The

appeal to history is constrained to just those instances that contributed to the selection of X

in its present form. Normal explanations are causal explanations (or perhaps collections of

causal explanations, one for each historical instance of an X causing a Y to take the value y2).

Normal explanation can therefore be captured in the interventionist framework. Suppose that

in the past, when X took value x2, Y took value y2 (figure 4.6). We can consider interventions

on each historical instance of X , changing it to (say) x1, and ask whether the value of Y would

have changed. Suppose that when X has any other value, Y has some value other than y2.

Then the way in which X historically performed y2 is by going into state x2. By establishing

which changes in X would have led to changes in Y , we can establish how X historically

performed y2. This historical story is the Normal explanation for how X performs y2. An

equivalent locution says that X performs y2 Normally by going into state x2.

A more involved example results from adding interfering conditions, as per figure 4.7.

Now X is partly at the mercy of N. Suppose N = n2 is a necessary (but not sufficient)
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Figure 4.7: If N affects how X Normally performs y2, then N must be mentioned as part
of the Normal explanation. Example: N is the oxygenation of blood by the lungs, where n1
= ‘not oxygenated’ and n2 = ‘oxygenated’. Then Y = y2 only when N = n2. Since this is a
necessary condition, N = n2 is (by definition) a Normal condition on the proper functioning
of X : oxygen supplied by the lungs is a Normal condition on the heart circulating oxygenated
blood around the body.

condition for Y taking the value y2. Then N = n2 would be part of the Normal explanation for

how X performs y2. Again, this relationship between the three variables can be understood on

the interventionist framework (see figure 4.1 and the text explaining the relationship between

cause, effect, and background condition). Conditions such as N = n2 are Normal conditions

for proper performance of y2.

4.3.4 More or less proximate Normal explanations

Normal explanations can be more or less proximate. More proximate explanations mention

only the causal connection between X and Y (and any intermediaries – see below) and the

immediate conditions affecting Y (such as N). Less proximate explanations ‘zoom out’ and

mention other relevant causal nodes. For example, in figure 4.8 the most proximate Normal

explanation of how X performs Y mentions only that N necessarily takes value n2. A less

proximate explanation would mention which values of M ensure N takes that value.
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Figure 4.8: The most proximate Normal explanation of how X performs y2 mentions only
the relevant value(s) of N. A less proximate Normal explanation mentions which values of M
produced those values of N. Example: the lungs (N) oxygenated blood by inhaling a gaseous
mixture of oxygen and other elements from the air (M). An even less proximate explanation
would mention parent nodes of M.

4.3.5 Intermediaries

A proper function need not be immediately causally downstream of the item to which it

belongs. Consider figure 4.9. If X has y2 as a proper function, Normal explanations of it

will mention the values that A and B took when y2 successfully occurred. Normal conditions

include M and N, assuming their values mattered for the outcome y2. For example, a heart X

has the proper function to circulate oxygenated blood around the body Y = y2. Intermediate

stages include the various arteries A, B through which the blood travels, and the protection

of those arteries by the skin M, N.

4.3.6 Relations as Normal conditions

It may well be that the clearest analysis of Normal performance mentions relations between

causal participants. Consider figure 4.10. Suppose Y takes value y2 when the value of A and

N match (that is, when A = a1 and N = n1, or A = a2 and N = n2, and so on). Suppose

further that Normally many of these different pairs occur, all leading to y2. How best to
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Figure 4.9: X must set the value of Y to y2 by setting a value of A, that in turns sets a value
of B, that sets a value of Y . Additionally, nodes M and N interfere with A and B respectively.
The Normal explanation for proper performance of y2 must mention the usual values of the
intermediaries A and B, as well as the contributing values of M and N. Example: X is the
heart, Y is the circulation of oxygenated blood, A and B are components of the arterial system
through which blood flows, and M and N are external parts of the body (such as skin) that
protect those arteries.

Figure 4.10: If the value of Y depends on a relationship between A and N, the Normal
explanation of how X performs y2 mentions this relation. Here the relation is illustrated by
a dashed line, which is not part of traditional causal models. Example: let X be a foraging
bee, A the set of possible locations it flies towards, N the set of possible locations of nectar,
and Y the condition of obtaining or failing to obtain nectar.

explain how X works – what is its Normal explanation? It is not a disjunctive explanation

that mentions each pair (a1,n1), (a2,n2), ..., as if there were no pattern to these pairings.

Rather, the Normal explanation mentions the relation between A and N.

Of course, the properties out in the world that are represented by values of variables

like n1, n2 do not themselves come with indices like 1, 2, and so on. Numerical labels are

indices of values of variables, which belong to models. Property values themselves do not

come with labels. A ‘match’ between properties cannot be specified simply by saying that

a1 occurred and n1 occurred, because the index subscript 1 is a human labelling convention.
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In order for the Normal explanation to genuinely include a relation, that relation must be

between properties in the world. There must be some reason why a correspondence between

properties, represented by node values, participates in the Normal explanation. What reason?

Let us first consider an example.

Here is a scenario that exemplifies figure 4.10 and includes as part of its explanation a

genuine relation. A honeybee needs to forage nectar and bring it back to the hive. The bee

(X) is causally upstream of two possible outcomes (Y ): failing to find nectar (y1) and finding

nectar (y2). As a result of a history of selection, y2 is a proper function of X . The immediate

activity that X can perform in order to bring this about is flying in a particular direction (A)

from the hive. Finally, a Normal condition on proper performance is that there is nectar (N)

in some direction from the hive.9

Under what circumstances will the bee be successful? It is not the case that flying in a

particular direction will bring in nectar – it is not the case that flying in a direction represented

by a particular value of A, say a17, will achieve y2. Nor is it just that there be nectar in a

particular location (represented by a particular value of N). Rather, it is that the location to

which the bee flies is the same as a location of nectar. Both A and N represent locations, and

these locations must be identical for the bee to find and retrieve nectar as required.

Recall the analysis of relational explanation in section 4.2. When combinations of in-

terventions yield an invariant outcome, that is a sign there is a relation at play. Intervening

and setting the value of A, the bee’s flight, to a certain location yields the outcome ‘nectar

obtained’ Normally only when the value of N, the location of nectar, was set to the same

location. The relation Same location is explanatory because there is an outcome-preserving

9For simplicity I ignore the condition that is the distance of nectar from the hive.
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intervention mapping. That relation is part of a Normal explanation because the outcome

that is preserved is successful performance of a proper function.

What is more, this location-matching relation seems ‘natural’ or ‘real’ for similar reasons

to the pattern-matching relation in the case of the sock-sorting machine. Being in the same

location as something else is easier to achieve than a gruesome relation between locations.

Not only that, but it is just more likely that invariant outcomes will result from relations like

this. The process that generates the invariant outcome ‘nectar obtained’ from the relative

positions of bee and nectar is a simple process of physical transference of nectar from the

flower to the bee. Relations that reliably lead to invariant outcomes as a result of purely

natural processes – as opposed to artificial constructs like the lookup-table machine – seem

more ‘real’ or ‘natural’ to us, as part of the same package of intuitions discussed in section

4.2. It would be extraordinarily unusual for an invariant outcome to be produced as a result

of multifarious distinct causal antecedents, where no relation could be found between them.

That would strike us as inexplicably fatalistic.

I am labouring the point about the naturalness of relations for reasons that will become

clear in section 5.2. There we will face the question how Normal explanations can pick

out the same relation across multiple historical performances of a proper function. For now,

however, we must continue to put in place the theoretical devices out of which we will

construct mapping relations.

4.3.7 Relations and cues

From the story so far, we can see how a Normal explanation might mention a relation be-

tween a causal antecedent of X and another Normal condition (figure 4.11). Suppose Y = y2
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Figure 4.11: A relation between an upstream Normal condition A and a separate Normal
condition N. This is one way to define cues. For example, if A is the location from which
a sweet scent is emanating and N is the location of nectar, a bee (X) might condition its
decision to fly towards a particular location (a node between X and Y , not depicted) on A in
order to retrieve nectar (Y = y2).

whenever (xi,ni) occur together. And suppose that X is designed to go into state xi whenever

A = ai. If this is a successful means of setting Y = y2, it can only be because (ai,ni) occur

in tandem. The design of X is such that it conditions its behaviour on A because there is a

relationship between A and N such that the value of A usually matches the value of N. That

is part of what it means for A to be a cue.

The status of A as a cue signifying N requires the relation between them to be explanatory.

As before, the interventionist framework allows us to determine whether the relation truly

is explanatory, by examining combinations of interventions on A and N and their effect (via

X) on the value of Y . Furthermore, the relation between X and N forms part of the Normal

explanation too. We usually only consider the relation between the cue and the signified, but

the device performing the function must itself be related to N in order to be successful.

4.3.8 Relational proper function

X has a relational proper function if it is supposed to “do or to produce something that

bears a specific relation to something else” (Millikan, 1984, p. 39). Consider figure 4.12.

Suppose X should set yi when ri obtains. Then X has a relational proper function.
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Figure 4.12: A relational proper function. X is supposed to produce a value of Y that
bears a specific relation to the value of R. (Here I use R instead of N to differentiate between
Normal conditions and relata that are part of the specification of a relational proper function.)
Example: when a chameleon (X) needs to avoid detection, it is supposed to change its skin
pigment (Y ) to a colour identical to that of its immediate environment (R).

Recall that a proper function as originally described could be represented as a vector.

For example, the function to produce y2 could be represented as < 0,1,0,0, ....0 > where

the vector positions are understood to range over the possible values of Y . Relational proper

functions can be represented as matrices, signifying that proper performance is dependent

on another variable. Equation (4.2) shows how a relational proper function of X , FR(X), can

be represented as a matrix. Each column represents a value of Y , while each row represents

a value of R. The presence of a 1 in a given cell signifies which value of Y must be set (the

cell’s column), given that the corresponding value of R occurs (the cell’s row).10

FR(X) =



1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1


(4.2)

For example, a chameleon that needs to avoid detection should change its skin pigment

10If there were multiple relata with respect to which X should act, its relational proper function could be
represented with higher-order arrays such as tensors. In what follows I assume for simplicity all relational
proper functions are specified with respect to a single relatum, so can be represented by matrices.
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Figure 4.13: Relational proper function: Y is a relational proper function of X . There must
be a downstream variable, Z, whose value depends on both Y and R and which contributes
to the proliferation of X . Adapted proper function: Once a value of R is instantiated, the
corresponding value of Y is an adapted proper function of X . Derived proper function: Z
is a proper function of X , and a derived proper function of Y . It is an invariant (i.e. not
adapted) function of Y . Example: Y is the skin colour of a camouflaging chameleon, R is
the background colour, and Z is the outcome of being detected or avoiding detection by a
predator.

Y to a colour matching that of the environment R. The rows of (4.2) correspond to different

possible colours of the environment, and the columns to different possible colours of the

chameleon. A value of 1 in a cell indicates that in order to perform its proper function, the

chameleon must turn that colour (the column) when the environment is that colour (the row).

How can an item obtain a relational proper function? There must be some downstream

result of both the effect Y and the relatum R that contributes to the proliferation of X . In the

case of chameleonic camouflage, the effect is avoiding detection by predators. Figure 4.13

depicts this further variable as Z. As before, the interventionist framework can be deployed

to ensure that it is in fact the relation that leads to the required outcome, and thus that Y ,

considered as a proper function of X , is indeed a relational proper function.

4.3.9 Adapted proper function

Suppose X has a relational proper function, like producing a pigment of a colour Y that

matches the colour of its background R. This relational function is specified generically,
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across the range of values Y and R can take. That is, the matrix given in equation (4.2) ranges

over every relevant value of R, and specifies the appropriate value of Y for each. Suppose

now that on a given occasion R has taken the value r3. Then X acquires the adapted proper

function11 to produce y3 (Millikan, 1984, p. 40). If the surface on which a chameleon is sat

is green (r3), then in order to perform its camouflaging function it must cause its pigment to

turn green (y3).

Relational proper functions are schematic, and can be represented by matrices. Adapted

proper functions are specific, and can be represented by vectors. The appropriate vector for

an adapted proper function corresponds to the appropriate row of the matrix representing

the relational proper function from which it was bestowed. The adapted proper function

corresponding to FR(X) with R = r3 can be represented as a vector, equivalent to the third

row of the matrix in equation 4.2:

Fr3(X) =< 0,0,1,0, ...0 >

The result of X’s performance, the actual yi that results, is an adapted device. The green

pigment of a camouflaged chameleon is an adapted device.

In the language of interventionism, an adapted proper function results from treating the

relatum of a relational proper function as a background condition whose value has been fixed.

Holding fixed the value of R is tantamount to selecting a row of the matrix (4.2), defining the

functional specification of X with respect to that value of R.12

11The word ‘adapted’ in the terms ‘adapted proper function’ and ‘adapted device’ (introduced momentarily)
is not to be confused with the evolutionary sense of adaptation. Here, what the function is adapted to is the
relatum R.

12A note on my chosen terminology here: although R is a background condition with respect to the causal
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4.3.10 Derived proper function

Adapted devices have proper functions. Those functions are, more or less, what their pro-

ducer produced them for doing. Since these proper functions are derived from the functions

of producers, they are called derived proper functions (Millikan, 1984, p. 41).

Sometimes the further function, the ultimate job for which the device was produced, is

a function of the producer that is always the same. Camouflaged skin colour is an example.

Consider again figure 4.13 as a representation of the chameleon’s predator-avoidance camou-

flage. Suppose z1 represents being detected and z2 represents avoiding detection. Avoiding

detection is one of the functions of pigment production, so Z = z2 is a proper function of

X . Avoiding detection is also a function of the specific colour of pigment produced on a

given occasion. Avoiding detection is not in itself an adapted proper function: it is always

the same outcome that is needed in order to be successful (i.e. the outcome ‘avoiding detec-

tion’, represented by z2). Therefore Z = z2 is an invariant derived proper function of the

pigment colour Y .

On the other hand, sometimes the further effect Z for which a device such as Y is pro-

duced is itself an adapted function. Then the derived function of Y – the function it has as

a result of being produced by X – is an adapted derived proper function. For example, if

Y is a honeybee waggle dance, its immediate function is to get watching bees flying in the

direction of nectar. Letting Z be the flight path of the watching bees, both this and the dance

are supposed to bear a relation to the adaptor R, the location of nectar. Figure 4.14 depicts

relationship between X and Z (because R influences the value of Z), the same is not quite true of the causal
relationship between X and Y , because R is not directly causally connected to Y . Since the adapted proper
function in question is a value of Y , it is not quite correct to say that R is a background condition for the causal
relationship involved in this function. However, I can think of no better term, and I trust that this laxity will not
result in confusion.
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Figure 4.14: Z is a proper function of X , and a derived proper function of Y . Z is also an
adapted function of X , so it is an adapted derived function of Y . Example: Y is a honeybee
waggle dance, and Z is the flight path of watching bees. (It is not a requirement that Y be a
signal, but examples involving signals are relatively easy to grasp.) In these kinds of cases
there will be a further downstream variable (not here pictured) that is causally affected by
both R and Z, e.g. the variable that represents finding or failing to find nectar.

this situation.

Whether Z is an invariant or an adapted derived proper function depends on whether the

nodes downstream of it require there to be a relation between Z and R. Again, this can be

revealed by an interventionist analysis.

In sum, the theoretical machinery in terms of which mapping relations shall be analysed

are well-suited to being represented in causal models and understood with respect to the

interventionist framework.

4.4 Mapping relations
4.4.1 The basic teleosemantic model

We now have all the ingredients of the basic teleosemantic model. The sender-receiver con-

figuration depicted in figure 4.15 contains multiple functions of different kinds, as well as

relations. To begin to analyse signals, we can investigate the basic model from the perspec-

tive of the most proximate Normal explanations for each of the functions of the Receiver,
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Figure 4.15: The basic teleosemantic model (figure 1.4, page 18), simplified and re-labeled.
Several kinds of function and relation are present, though only the descriptive mapping rela-
tion is depicted.

Signal, and Sender respectively.

Receiver. In the simplest case, the receiver has a direct proper function. It is supposed

to bring about a particular value of Z which is downstream of it. Z is also affected by N. If

the receiver achieves the required value of Z by conditioning its behaviour on an upstream

node, Signal, then Signal must bear a relation to N. This relation is a Normal condition on

the receiver’s functioning properly.

Compare this situation to figure 4.11 on page 164. There, an item achieved its proper

function by conditioning its behaviour on an upstream variable. The upstream variable was

characterised as a cue. Here, we are focusing on signals; however, by considering only the

most proximate Normal explanation for the receiver’s proper function, the analysis is the

same as that given for cues. Since the most proximate explanation ignores the sender, the

distinction between signals and cues collapses.

Signal. The signal has a direct proper function identical to that of the receiver. It is

supposed to set a certain value of Z. Now, there is an intermediary between the signal and its

proper function: the receiver. It is unusual to talk of the receiver as an intermediary, but from
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the perspective of the signal, that is just what it is. The signal achieves its proper function

by setting the receiver node to a certain value which, together with external condition N,

produces the desired value of Z.

Since the value of Receiver must change depending on the value of N, Signal has a

relational proper function to set the appropriate value of Receiver. In other words, the Signal

performs its direct proper function (setting the value of Z, which should always be the same)

by performing a relational proper function (setting the value of Receiver, which should differ

depending on N). This situation is like the chameleon modifying its pigment colour to match

the environment (N) in order to avoid detection (Z = z2). On a given occasion, when the value

of N has been determined, the Signal’s relational function becomes an adapted function to

set Receiver to a specific value.

As a consequence, Receiver is itself an adapted device, shaped by Signal into a form

that helps it (the Signal) perform its proper function. For example, the waggle dance causes

receiver bees to fly off in search of nectar. From the perspective of the dance, the flight is a

means to an end; it is adapted by the dance to a form bearing the appropriate relation to the

location of nectar. Normally, the dance causes a flight in the right direction by first bearing

its own relation to nectar. The honeybee receiver’s observation of, and reaction to, the dance

is a sequence of causal mechanisms that convert the one relation into the other.

So far, we have two causally connected devices, Signal and Receiver. Both have identical

direct functions – a value of the variable Z – and both perform their functions Normally by

bearing a relation to a background condition N. Signal performs its direct function by first

performing a relational function, configuring Receiver so it is capable of acting as required. It

does this by bearing a relation to N. That same proposition, from the perspective of Receiver,



Chapter 4. Mapping relations 172

construes Signal’s relation to N as a Normal condition. The Receiver uses this relation to

perform the shared direct proper function, configuring itself so as to be appropriately related

to N in the process.

The lesson to take so far is that when two devices share a direct proper function, its

performance can be described from the perspective of either. Normal conditions – including

relations – may take different roles in these two different stories. But the roles are equivalent

so long as the devices cooperate.

Sender. As we are dealing only with cooperative systems, Sender shares the same direct

proper function as Signal and Receiver. It must bring about that same desired value of

Z. Sender can achieve this only through the intermediaries Signal and Receiver. Since the

external condition N impacts the value of Z, Sender must cause Signal (and thereby Receiver)

to bear appropriate relations to N. From the Sender’s perspective, both Signal and Receiver

are adapted devices. Setting their values is a relational proper function of Sender; setting

their values on a particular occasion (i.e. given a value of N) is an adapted proper function

of it.

As adapted devices, Signal and Receiver both gain derived proper functions. The Re-

ceiver now has three proper functions: its own direct function, a derived function from Sig-

nal and another derived function from Sender. Because the system is cooperative, all these

functions pull in the same direction.13 What is a good outcome for one is good for all. The

13It is not quite true that functions always ‘pull in the same direction’ in cooperative systems. All three
functions of the receiver can have different satisfaction conditions on a given occasion if the sender makes
certain kinds of mistake. Suppose a honeybee scout returns from a nectar source that has since (unbeknownst
to the sender) become depleted; it cannot help the receiver perform its direct function (getting nectar) by helping
it perform its sender-derived function (going to the just-visited source). Furthermore, if the sender performs an
incorrect dance (perhaps because it is disoriented), then the receiver’s signal-derived function is different again:
it is supposed to go in the direction indicated by the dance, which is neither the just-visited source nor (barring
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Signal has two functions, one direct and one derived (from Sender). Again they have one

and the same satisfaction condition. In order to perform these functions, Signal must bear

a relation to N. The relation between Signal and N is part of a relational proper function,

from the Sender’s perspective. It is a Normal condition for a direct proper function, from the

Receiver’s perspective. In other words, the Sender has as a proper function to ensure that a

certain Normal condition exists for a proper function of a cooperating, causally downstream

device. Part of what is special about mapping relations is this dual character.

The Sender too must bear a relation to N. In producing a value of Signal that bears a

relation to N, the Sender itself must go into a state that bears such a relation. This need not

be the same relation the signal bears. For example, bees that perform the waggle dance must

bear a relation such as just-returned-from-location-of to the source of nectar their waggle

dance is supposed to indicate. Otherwise, they do not perform their proper function (getting

receiver bees to that same source) Normally. They might accidentally get receiver bees to a

nectar source; that is a different matter.

Now we have a puzzle: if all three participants in the basic model – Sender, Signal and

Receiver – must bear a relation to N in order for the system to work Normally, what is special

about the relation borne by Signal?

4.4.2 What makes mapping relations special?

In the basic teleosemantic model, senders, signals and receivers all bear relations to N. But it

is the relation borne by signals that is singled out for special treatment. The signal-signified

relation is thought to be the fundamental representational relation, capable of playing a

lucky accidents) any nectar source at all.
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unique and long-sought after explanatory role in biology and cognitive science. Why?

The question brings two desiderata along with it. First, in section 1.5 I claimed that

paradigmatic signals are those for which sender and receiver are cooperating. The above

analysis of the basic teleosemantic model assumes that all three components act to achieve

the same end. This underpins the several layers of functions possessed by the signal and

receiver, as well as the dual character of the relations borne by all (each relation is a Normal

condition for more than one proper function, even though all pull in the same direction). If

the system did not cooperate, these relations would not coincide. For example, the Receiver

would require that the Signal bear a certain relation, while the Sender would require that

it bear a different one. The special explanatory role of mapping relations should only be

available when systems are cooperative. Or to put the point in less absolute terms, mapping

relations should be explanatory to the extent that systems cooperate.

The second desideratum has to do with resource separation, the other paradigmatic fea-

ture of signals introduced in section 1.5. Paradigmatic signals are those for which the re-

sources required to achieve the receiver’s proper function are provided from elsewhere than

the signal. Good signal design respects resource separation. The energy and materials ex-

pended in signalling are distinct from the energy and materials expended in achieving what-

ever outcome is guided by the signal. The specialness of mapping relations, then, had better

respect this feature of the paradigm. It had better be the case that the unique explanatory

role of signals and their mapping relations comes into sharper focus as resource separation

increases. Otherwise we would lose the motivation to treat resource separation as paradig-

matic.

As it turns out, these two desiderata are directly involved in accounting for the special
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explanatory role of signals. When the basic teleosemantic model holds, three things can be

said:

1. Greater cooperation enables greater resource separation.

2. Greater resource separation entails the signal’s bearing the relation is more explanato-

rily important.

3. Mapping relations are special to the extent that they are the only explanatory feature

of the signal vehicle.

I will discuss each statement in turn.

Greater cooperation enables greater resource separation. The basic teleosemantic

model includes principles of good signal design. If a sender and receiver desire the same

outcome, and the receiver has their own energy source, it is not worth attempting to transmit

energy across the causal link between sender and receiver. Energy can be easily dissipated,

and the system is already expending resources in sending the signal itself. It is more effi-

cient to include only those materials required to overcome noise, allowing the receiver to

accurately observe the signal. But this is only so when receiver and sender cooperate. Oth-

erwise, if the sender has a function the receiver does not share, the sender may attempt to

physically force the receiver into a certain course of action. The greater the antagonism, the

more energy the sender must invest in forcing the receiver’s hand. Conversely, the greater

the cooperation, the more the sender can concentrate on getting the signal observed. This is

just what resource separation entails.

Greater resource separation entails the signal’s bearing the relation is more explana-

torily important. When the signal’s energy and material resources are not transferred to the

receiver, the explanatory link between them must be relational. In the simplest case, the
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signal triggers a response from the receiver, timed to coincide with a relevant external con-

dition. Then the relation borne by the signal to the condition is ‘at the same time as’. By

triggering an immediate response, the signal ‘transfers’ this relation to the receiver. In other

cases, whatever kind of relation the signal bears to the world, it is as a result of this that

the receiver is configured (in Millikan’s terms, adapted) to act appropriately. To the extent

that energy and materials are not passed between signal and receiver, the only explanatorily

relevant feature of the signal is the relation it bears.

Mapping relations are special to the extent that they are the only explanatory fea-

ture of the signal vehicle. Signals are special because their only job is to bear a relation

to something else. It is this feature that prompts informational and representational descrip-

tions from biologists and cognitive scientists. The relations borne by senders and receivers

are overshadowed by their mechanical operation.

A similar feature of signals underpinning their special explanatory role has been recently

noted by Artiga (2020). Paradigmatic signals do not provide material resources or parts

of mechanisms that enable receivers to perform their responses. Signals are not enabling

causes; they do not make it possible for receivers to do things they could not do otherwise.

The acts receivers perform are those they could have performed without the signal, in princi-

ple. For example, receiver bees could in principle fly to any location within foraging range

without observing the waggle dance. Signals cause receivers’ actual flights but they do not

enable them. Artiga (2020, §4.2) gives a fuller account of the notion of an enabling cause,

and defines by contrast a minimal cause. He argues that paradigmatic signals are minimal

causes: they cause receiver responses without enabling them. If signals are minimal causes,

their explanatory role is purely relational. This further underpins their special status.
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By contrast, the causal roles of senders and receivers in the basic teleosemantic model

are not minimal. Consider first senders, and how they produce the three kinds of signal

discussed in section 1.2: physical emissions, morphological structures, and behaviour. Phys-

ical emissions cannot bring themselves into existence and transmit themselves to receivers

without the activity of their producers. And it is barely coherent to think of structures and be-

haviours existing without their bearers. In each case, senders are enabling causes of signals.

Consider now receivers. Most kinds of response usually considered are behaviours. For

example, foraging and predator avoidance are typical cases of inter-organismal signalling

functions. The receiver is an enabling cause of these activities by the same argument as for

the sender. My supposition is that in all paradigmatic applications of the basic teleosemantic

model, receivers are enabling causes of their actions.14 Senders and receivers are both en-

abling causes while signals are minimal causes. This helps to capture the uniquely relational

explanatory role of signals.

4.5 Conclusion

Mapping relations have an explanatory role to play in the functional sciences. Evolutionary

biology and cognitive science treat signals as contentful, and cite signal content in explain-

ing behaviour. These practices are well interpreted by teleosemantics. According to the

theory, Normal explanations of proper functional performance can mention relations. This

approach is supported by an understanding of relational explanation in the interventionist

framework. Causal models of proper functions reveal many kinds of relation borne by differ-

14The ‘Act’ variable was omitted from the simplified teleosemantic model in figure 4.15. It stands between
Receiver and Z.
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ent kinds of mechanism. The special explanatory role of mapping relations is secured by the

unique causal profile of signals. Paradigmatic signals are minimal causes, designed so that

the energy and materials used to transmit them are not used by the receiver in performing

the response. It is this resource separation that ensures the explanatory role of signals is

relational.



Chapter 5

Further issues with mapping relations

5.1 Introduction

The previous chapter introduced mapping relations and outlined their explanatory role. This

chapter goes into more depth, responding to some objections to Millikan’s theory and draw-

ing links between it and communication theory. In section 5.2 I consider a proposed amend-

ment to the theory due to Shea (2013). In section 5.3, I respond to an objection due to

Godfrey-Smith (1996, §6) and Shea (2007). In section 5.4 I consider the relationship be-

tween mapping relations and communication-theoretic codes, as well as the question how

mapping relations can play the explanatory role philosophers usually attribute to semantic

content. In section 5.5 I argue that an important dual relationship in communication theory,

between compression and transmission, can be understood in terms of the two fundamental

kinds of mapping relations: descriptive and directive. Finally, in section 5.6 I offer an inter-

pretation of the explanatory pattern that treats semantic content as a (one-place) property of

signals, rather than as a relation.

5.2 Ontology of mapping

Two questions about the ontology of mapping relations have not yet been answered:

1. What exactly are we appealing to when we cite a relation in a Normal explanation?

179
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2. If mapping relations are defined in terms of success, how can they explain success?

The second question is discussed in section 5.3. The reason the first has not yet been

answered is that we have not fully considered the historical nature of Normal explanations.

5.2.1 The role of relations in Normal explanations

Normal explanations state how ancestors of a given (present) device performed their proper

functions on those occasions in the past when they contributed to the proliferation of the

lineage that gave rise to the (present) device in question. Normal explanations are aggregate

explanations. They pick out what is the same across a range of historical instances.

The problem with citing a relation in a Normal explanation is that relations comprise

many different token-token correspondences. Normal explanations are supposed to say what

was the same across all these different instances. For example, a given honeybee dance has

many ancestors, all pointing (let’s suppose) in different directions. Yet the Normal explana-

tion for how receiver bees successfully obtained nectar must say that all these dances were

doing the same thing. What allows us to say that all these different dances bear the same

relation to their nectar sources? What ensures the Normal explanation is univocal, as teleose-

mantics demands? We need a principled restriction on which historical instances count as

falling under ‘the same relation’ for the purposes of participating in a univocal Normal expla-

nation. In one sense, we are asking what allows us to ‘abstract’ from individual properties to

a relation, where abstraction is as described in section 4.2.

Let us illustrate the problem in more detail before trying to solve it. Recall the gruesome

sock-sorter from section 4.2. It pairs left-foot socks with a cloud pattern to right-foot socks

with a flower pattern, left-foot socks with flowers to right foot socks with ducks, and so on,
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with no paired socks ever having a matching pattern. I called the relation instantiated by

this machine gruesome, but it has at least one important regularity: every time a left-foot

cloud-pattern sock is placed into the machine with a right-foot flower-pattern sock, it will

pair them. Each pairing will recur, and will recur because the machine has a lookup table

which does not change during its operation. The pairings seem unusual, but at least they

are consistent. Supposing this machine had as a proper function to produce these unusual

pairings, a univocal Normal explanation could be given that cites its lookup table.1 By

contrast, imagine a machine whose lookup table is randomised after each pairing event. No

consistent pairings would occur, so no univocal Normal explanation of this kind would be

available.2

Relations cannot be cited in Normal explanations, explaining how a lineage of devices

produced the same outcome by performing many different actions, unless there is some

reason why those actions led to the same outcome each time. The aim of this section is to

state conditions on there being such a reason. First let us survey what Shea and Millikan

have said on the topic.

5.2.2 Shea’s critique of Millikan

Shea (2013) claims that Millikan places a certain condition on citing relations in Normal

explanations.3 He claims she requires that there be an isomorphism between the two relata.
1In this case the Normal explanation might not be historical. The selection process that produces such

artifacts is usually explicit design rather than a prolonged period of repeated selective events. For simplicity I
will ignore this distinction. I assume the historical case is harder to solve, so by solving it we give good grounds
to think the problem can be solved (if it even arises) for explicit design.

2Of course, if the machine was designed to randomise sock pairings then there would be a univocal Normal
explanation. The explanation would cite its randomising program.

3The discussion between Shea and Millikan focuses on mapping relations. I want to emphasise that this
issue concerns the role of any kind of relation in a Normal explanation.



Chapter 5. Further issues with mapping relations 182

In causal modelling terms, the condition is that there be an isomorphism between the values

of the variables. The idea is that an isomorphism can provide the ‘sameness’ that unifies

disparate instances. Different performances of a proper function, such as the chameleon’s

avoiding predation by matching its immediate environment, fall under the same Normal

explanation because they all exemplify the same isomorphism – which for the chameleon is

an isomorphism between the possible colours it can display and the possible colours of its

immediate environment. This condition can be formulated as follows:

ISO: For a relation to be cited in a univocal Normal explanation, it must be an
isomorphism.

Shea claims that Millikan intends this condition to be an additional constraint on Normal

explanation, beyond what has already been said in chapter 4.

As Shea points out, there is at least one significant problem with this proposal. The

constraint that there be an isomorphism between two variables does not uniquely specify

any particular relationship between them. Isomorphisms, construed as one-to-one mappings

between the values of variables, are cheap. Any two variables with the same number of

values will have many isomorphisms between them. In the case of the chameleon, the mere

fact that a scientist can state an isomorphism between skin colours and environmental colours

plays no special explanatory role. Isomorphisms therefore cannot help a relation to play

a more substantive explanatory role in a Normal explanation. There are many different

isomorphisms between skin colours and environmental colours that do not help explain how

a proper function was performed on many historical occasions. In other words, since there

would be isomorphisms in non-univocal cases, isomorphisms alone cannot constrain Normal

explanations to be univocal.
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Here it might be thought we can draw on the analysis in section 4.2. There I argued for a

somewhat coherent package of intuitions that contributes to our treating relations as more or

less ‘real’. It might be thought that the more real a relation, the more univocal the explanation

that adverts to it. There is something right about this idea, as we will see in a moment. But

it is not the whole picture. Recall that the original ‘gruesome’ sock-sorter could perform

a (relatively unusual) proper function in accordance with an acceptably univocal Normal

explanation. What we are looking for this time is not a condition that distinguishes the

standard sock-sorter from the gruesome one, but a condition that distinguishes both from the

randomising machine. We can find it by following the discussion between Shea and Millikan

a little further.

After rejecting the isomorphism constraint as too weak, Shea considers a stronger sense

in which there can be a correspondence between the values of two variables. There can be

structure within a variable, such that the values within it are related to each other. For exam-

ple, the location of a nectar source is a variable whose values are all spatial locations. Spatial

locations are related to each other spatially: the location in which I am currently standing

bears the relation ‘30 metres north of’ to a spot 30 metres south of here; that spot in turn bears

that same relation to a spot even further south. The way mathematicians conceive of structure

is as operations on, or transformations between, elements in a set. A spatial transforma-

tion on a location produces another location.4 A transformation on colour produces another

colour. There may be multiple kinds of transformation that relate the values of a variable,

such as hue, saturation and luminosity for colours. However, only some of these may be

4Mathematicians would usually call a transformation a function, but I am strictly reserving use of that word
for obvious reasons. Another way to think of a transformation is as an operation on one value of a variable that
produces another value of the same variable.
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relevant in a given case. Suppose for example chameleons were only capable of changing

the hue, and not the saturation or luminosity, of their skin pigments. Then the transformation

relating values of the variable ‘chameleon skin colour’ would be a transformation on hue,

and would not affect saturation or luminosity.

How might structure ground the univocity of Normal explanation? The idea is that struc-

ture can relate different instances of performance of a proper function. Suppose for example

we seek the Normal explanation for the chameleon’s successfully avoiding predators. We

look back in time, and find among the chameleon’s ancestors a case in which one turned

brown when its immediate environment was brown, and another turned green when its im-

mediate environment was green. In order to give a univocal Normal explanation we have

to show that the relation one ancestor bore to its environment is the same relation as that

borne by the other. In one sense they are different relations – one is brown-brown while the

other is green-green – but in another sense they are the same relation, namely Same colour.

We appeal to structure: the colour transformation that changes brown environment to green

environment is the same as the transformation that changes brown skin to green skin. The

mapping brown-brown is therefore the same as the mapping green-green because this pair

of mappings preserves the structure within each variable (figure 5.1). Preserving structure

means that if you start with one value (brown skin), move to what it maps to (brown envi-

ronment), then perform the transformation (green environment), you are in the same place

as if you had first performed the transformation (brown skin to green skin) then followed

the mapping (green skin to green environment). Situations in which skin did not match en-

vironment therefore do not belong within the Normal explanation. They do not obey this

structure-preserving feature.
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Figure 5.1: A structure-preserving isomorphism between two variables (which can be
thought of as nodes Y and R from figure 4.13, page 166.) The isomorphism maps skin
colour (upper variable) to environment colour (lower variable). The isomorphism is structure-
preserving because performing the skin-colour transformation followed by the isomor-
phism yields the same result as performing the isomorphism followed by the equivalent
environment-colour transformation. Two values of each variable are shown, to illustrate the
point. Starting from the skin-colour value Brown, performing the brown-green transforma-
tion yields Green skin colour, and subsequently performing the isomorphism yields Green
environment colour; starting again with Brown skin colour, performing the isomorphism
first yields Brown environment colour, and performing the equivalent transformation pro-
duces Green environment colour. In mathematical terminology, the diagram commutes.
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The proposal is therefore that isomorphisms between variables need to be supplemented

with transformations within variables in order to enter into univocal Normal explanations.

Isomorphisms that obey the structure defined by a set of transformations are called structure-

preserving isomorphisms.

On the face of it, this proposal is promising. Structure seems to guarantee a tighter link

between isomorphisms, motivating treating different token-token correspondences as part of

the same relation. But Shea points out that at least one way of framing this condition is

too weak, just as ISO was too weak. Shea considers this new constraint under the following

guise:

STRUC: For a relation to be cited in a univocal Normal explanation, it must be
a structure-preserving isomorphism.

The problem with this condition is that it does not say which structure within the variables

is to be preserved. For any gruesome isomorphism, there are gruesome transformations that

count as grounding structure for that isomorphism. Structure, it turns out, is as cheap as

isomorphism. For example, consider an isomorphism between skin colour and environment

colour that takes brown skin to green environments and green skin to brown environments.

This isomorphism does not preserve the structure depicted in figure 5.1, because performing

the isomorphism followed by the environment-colour transformation depicted there would

not yield the same result as performing the skin-colour transformation followed by the iso-

morphism.5 However, the isomorphism does preserve a structure defined by a transformation

that takes Green environments to Brown. This relationship between structures of skin colour

5In fact I did not specify a target for the transformation on Green environment-colour in figure 5.1. I think
the general point should be clear nonetheless.
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and environment colour is gruesome, because the first transforms Brown skin to Green skin

(as per the original example) while the second transforms Green environment to Brown en-

vironment – and the isomorphism implies these are equivalent transformations.

Structure is cheap because there are gruesome transformations, and nothing we have yet

said prohibits pairs of variables being associated with transformations that seem to us very

unusual. What we need is a way to determine when transformations are genuinely equivalent

to each other, in the way that brown skin → green skin seems to be equivalent to brown

environment → green environment. Neither ISO nor STRUC can provide this.

5.2.3 The right way to constrain relations in Normal explanations

Neither ISO nor STRUC appropriately constrains the kinds of relation that can appear in

Normal explanations. There are too many isomorphisms that satisfy each condition.

The problem with STRUC is that any given isomorphism preserves some kind of struc-

ture. The constraint could be tightened if we could specify what structure the isomorphism

is required to preserve. That is, rather than saying ‘there must be some pair of transforma-

tions that this isomorphism obeys’ (which is too weak because there are plenty of gruesome

transformations), we can say ‘given this pair of transformations, there must be an isomor-

phism that preserves the structure’. This strengthens the condition considerably. It is much

more demanding to preserve a particular, specified structure between variables than to satisfy

STRUC. We can therefore examine the following condition:

STRUC-FIRST Given a set of transformations on two variables, for a relation
between those variables to be cited in a Normal explanation, it must be an iso-
morphism that preserves the structure defined by those transformations.
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STRUC-FIRST is stronger than STRUC because it pre-specifies the structure that must be

preserved, rather than leaving it an open choice (Shea, 2013, p. 67).

However, we now have the problem of determining which transformations are to be

specified. We have a proper function for which we seek a univocal Normal explanation, one

component of which is to be a relation. We can appropriately constrain that relation if we

can specify the structure of each relatum. So the question is: how does a proper function

pick out the structures to be preserved?

Millikan explicitly says that “Normal explanations are causal explanations” (Millikan,

2013c, p. 82). A proper function is a value of a node, and a Normal explanation is a causal

explanation of how that value came about on many historical occasions. Relations are al-

lowed to enter into Normal explanations in the same way that they are allowed to enter into

causal explanations more generally. We can therefore draw on the account in section 4.2.

If a Normal explanation is to mention a relation, it must specify patterns of invariance in

interventions on the relata that bring about that value.

Interventions are more coarse-grained than transformations. Interventions specify a tar-

get value, while transformations specify both an original value and a target value. Never-

theless, discovering a pattern of invariance is equivalent to discovering structure of the kind

depicted in figure 5.1. Take the case of the chameleon again. Having discovered a pattern

of invariance, we can answer the question: ‘Given the outcome of a brown skin-brown en-

vironment pairing, what is the colour of skin that produces this same outcome when the

environment is green?’ Interventionism delivers the answer ‘green skin’, completing the

diagram in figure 5.1 in the required way.

Finding a pattern of invariance is equivalent to uncovering the required corresponding
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structure of the two related nodes and the relation between them. So the demand that Normal

explanations be univocal is already strong enough to constrain the relations that can appear

in them. This demand implies STRUC-FIRST for relational explanation. Therefore, Millikan

need not add an extra condition to the theory that ensures there exist isomorphisms for Nor-

mal explanations to cite. The condition that Normal explanations must be both causal and

univocal already implies everything about isomorphisms that needs to be said. Shea (2013)

appears to come to the same conclusion, though he does not draw on interventionism.

So far we have spoken of relations that appear in Normal explanation in general. What

about mapping relations?

5.2.4 The structures preserved by mapping relations are determined by

receiver design

Mapping relations are a special case of relations that enter into the explanation of relational

proper functions. So mapping relations too must be isomorphisms that preserve structure,

where that structure is determined by invariant outcomes preserved over many different oc-

casions. What is special about mapping relations is that the invariance is determined by the

way receivers respond to signals. Let us unpack this idea.

Relations appear in Normal explanations when downstream causal processes are sensi-

tive to the structures of the relata. In the case of mapping relations, it is the receiver whose

sensitivity to different signals brings about the invariant outcome. So the structure that must

be preserved by the mapping relation is determined in part by the constitution of the re-

ceiver, by the differences it is causally sensitive to. This is the sense in which mapping rules

are determined by receivers (which is, incidentally, what primarily distinguishes Millikan’s
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teleosemantics from that of Neander and Dretske).

Mapping relations have more scope to be unusual than relations appearing in relational

functions in general. Receivers can be designed along with senders, and hence signals. Rela-

tional functions in general are hostage to causally downstream world affairs outside the scope

of the selection process that shapes the device possessing the function. For the chameleon,

the existence of predators is a given. It must match its skin colour to the environment, and

the specification for the matching relation (what structure it must preserve and how precise

it must be) is a consequence of the predator’s perceptual system. Selection cannot tune both

chameleon and predator to increase the efficiency wih which chameleons avoid predators. In-

deed, in this case two selection processes work against each other. The point to bear in mind

is that what is causally downstream of a relational function is in general outside the remit

of the selection process that gives rise to the function. By contrast, mapping relations enjoy

a certain kind of freedom that is a consequence of joint selection. Nonetheless, mapping

relations must still be structure-preserving isomorphisms if they are to enter into Normal

explanations.

However, here Shea’s complaint seems to return with new force. Signals would bear an

isomorphism to states – even a structure-preserving isomorphism – just by being of the same

cardinality. Given a collection of success-relevant world affairs the receiver needs to act in

relation to, any set of signals would bear some structure-preserving isomorphism to those

states. Wouldn’t such an isomorphism then count as a mapping rule? And wouldn’t that

make mapping relations to cheap to be of interest?

No, it is not the case that any specifiable isomorphism between world states and signals

counts as a mapping rule. This is because the structure of the signal that the mapping rule
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must preserve is determined by the constitution of the receiver. And the structure of the

world states is constrained by the act the receiver must perform (just as in the basic relational

proper function case). Thus both structures are somewhat constrained. The demand that

there be a univocal Normal explanation implies STRUC-FIRST, as before.

It is true that if there were a completely free choice of receiver, then there would be a

completely free choice of signal. Then it would indeed be easy to instantiate the appropriate

isomorphism. But that is so rarely the case in real life, and even rarer in biological systems.

There are constraints on what receivers are capable of, constraints on energetic resources, and

constraints on what signals can be sent (that is, constraints determined by physical properties

of the channel). The structure of the world states that must be preserved cannot be freely

chosen, for it is determined by the receiver’s own relational proper function (see figure 5.2).

Achieving an isomorphism that preserves that structure, given the constraints facing sender,

signal and receiver design, is difficult. It is for this reason that isomorphisms that can be

identified with mapping relations are not ubiquitous.

To sum up this section: Shea pointed out that if ISO or STRUC were intended by Millikan

as extra constraints on which relations could enter into Normal explanations, they would be

doing no good theoretical work. Shea argues (and we can agree) that the only condition of

this kind that could do the relevant theoretical work would be STRUC-FIRST. Fortunately,

STRUC-FIRST is entailed by the condition that Normal explanations must be univocal. Sig-

nals, as entities with relational proper functions, are unusual. They need to possess struc-

ture that, together with the structure of world states, is preserved by the isomorphism (the

mapping rule). But there is a kind of freedom of choice in what structure they have. The

arbitrariness of some signals is a consequence of them exercising this freedom. There is still
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Figure 5.2: The structure that signals in a given system must have is in principle a free choice.
The only demand is that the signals bear an isomorphism (dashed line between Signal and
N) to world states N that preserves a certain structure of those states. The relevant structure
of the world states is determined by what explains how the receiver performs its relational
proper function, that is, how it produces an act that bears the appropriate relation to the
world state (dashed line between Act and N). Since any system of signals with the same
cardinality as world states will support many structure-preserving isomorphisms, it seems
to be a very undemanding condition that such an isomorphism exist. However, signals are
further constrained by what the receiver is capable of responding to. In biological situations
this will typically be a strong constraint. For example, honeybees could in principle use an
arbitrary system of signs to indicate locations of food in their environment. But the waggle
dance is so much more efficient, and so much easier for selection to produce. As a result, the
actual mapping relations of the waggle dance are not arbitrary, they are iconic.



193 5.3. The circularity problem

structure to an arbitrary signalling system, it is just that it is of the lookup-table type. Only

when receivers are flexible enough to interpret arbitrary signals consistently can such signals

exist.

5.3 The circularity problem

Mapping relations are defined in terms of proper function and Normal explanation. In turn,

proper function is defined in terms of causal effects that were selected for. But mapping

relations are supposed to help explain successful proper functioning. Receiver bees are able

to forage more efficiently (when they do) because the waggle dance bears a mapping rela-

tion (when it does) to a source of nectar. Mapping relations explain Normal successful proper

functioning, but they are defined as those relations which in fact held when receivers success-

fully performed their proper functions Normally. An explanation that cites in its explanans

an entity defined in terms of its explanandum is circular. Circular explanation is prohibited.

What has teleosemantics to say about this?

The obvious answer (and one I shall endorse) is that instances of past success help explain

current success. But this answer has been disputed. Godfrey-Smith (1996, §6) and Shea

(2007) argue that teleosemantics downgrades the role of truth in explanations of success.

Proponents of the theory must either accept that the role of truth is not as substantive as it is

usually taken to be, or supplement the theory with a richer account of mapping relations (as

Shea (2007) does).
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5.3.1 The objection

Godfrey-Smith argues that the “orthodox naturalistic view” of cognition takes truth to be a

property of representations that is a “fuel for success” (Godfrey-Smith, 1996, p. 171). When

an organism’s beliefs are true it is generally in a better position to get what it wants than

if those beliefs were false (or if it had no beliefs). There are of course many caveats to this

statement. Sometimes false beliefs engender behaviour that is accidentally successful. But as

a general principle, the link between truth and success is implicitly endorsed via our tendency

to cite true beliefs in explanations of successful behaviour. Fred was thirsty, and went to the

fridge because he believed it had beer in it. How come his thirst was quenched? Because

his belief was true. Theories that describe beliefs as bearing relations to world affairs are

correspondence theories, and the correspondence view takes truth to be a general-purpose

fuel for success.

The task of a naturalist theory, says Godfrey-Smith, is to describe the natural property

that has these fuel-for-success characteristics. He argues that teleosemantics does not meet

this criterion. Signals are true when they bear the same relation borne by previously success-

ful signals of the same kind. But this definition of truth says no more than that true signals

are those that fall under a certain historical pattern. Explaining successful behaviour by ap-

peal to true signals is then no more substantive than saying ‘the system did the same thing

as it did on past occasions of success.’ While such an explanation may not be prohibitively

circular, it does not have the force that a genuine fuel-for-success approach seems to demand.

For Godfrey-Smith, Millikan’s description of her theory as a version of the correspon-

dence theory of truth is misleading. Her theory does not say, ahead of time as it were, which

relations will count as mapping relations that help organisms achieve success. She does not
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specify a pre-existing resource – a fuel for success – that can be identified with truth.

Shea (2007) agrees with Godfrey-Smith that defining mapping relations solely in terms

of past success is insufficient. Shea compares explanations of success that appeal to map-

ping relations with explanations of the causal powers of sleeping pills that appeal to their

possessing dormitive virtue. Defining ‘dormitive virtue’ as ‘that property which has previ-

ously caused people to fall asleep in the past’, such an explanation does no more than locate

the present sleeping person in a historical series. Everyone in the series shares the property

of having fallen asleep after having taken the pill, but nothing more substantive is given

in terms of (for example) the pill’s chemical constitution. For Shea, such an explanation

is not as substantive as it ought to be. Appealing to mapping relations should have more

explanatory power.

Both Godfrey-Smith and Shea find more force in definitions of semantic relations that

include mention of information. Godfrey-Smith (1996, p. 186) mentions that Dretske’s ac-

count, which includes a role for indication in the definition of truth conditions of a signal,

avoids the problem. Shea (2007, §5.1) explicitly adds a condition to the teleosemantic defi-

nition of mapping relations that cites what he calls correlational information. In both cases,

Millikan’s definition is argued to be too weak, and more restrictive conditions on what gets

to count as a mapping relation are offered.

5.3.2 A reply

The problem6 reveals a significant difference between Millikan’s and Godfrey-Smith’s under-

standing of the explanatory role of semantic content. For Godfrey-Smith, semantic content
6Millikan (2007) and Artiga (2014b) also offer replies to the circularity problem. I intend my reply to be

consistent with those accounts.
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is an explanandum. The naturalist project is tasked with providing an explanans: how did

content get into the world? From this perspective, teleosemantics can be seen as offering an

answer to that question. Its answer is a historical, selective story about signalling behaviour.

By contrast, Millikan treats semantic content as an explanans for a more basic explanandum:

reliably successful functional behaviour. The naturalist project is tasked with defining, or

otherwise characterising, the natural property (or relation) that best captures our pretheoretic

use of ‘semantic content’. From this perspective, teleosemantics can be seen as characteris-

ing that relation. I use the term ‘mapping relation’ for the kind of relation picked out. Now,

it so happens that teleosemantics characterises that relation via its appearance in a certain

other kind of explanation: Normal explanation.

We should therefore begin analysing the circularity problem by keeping distinct two dif-

ferent kinds of explanation. One is a pretheoretic explanation employed by scientists when

faced with the question how signalling contributes to successful behaviour on a given occa-

sion.7 The explanans makes reference to the meaning or content of signals. An observer of a

honeybee colony may ask: how do scouts find food at a rate better than chance? On at least

some occasions, the answer is that bees who have previously visited that same food source

communicate the location to other bees. The way in which location is communicated entails

that different dances have different locations as contents. So our first type of explanation has

the following form:

PRETHEORETIC-EXPLANANDUM: Reliably successful functional behaviour (in
particular, success of a signalling system) on a particular occasion.
PRETHEORETIC-EXPLANANS: Signals have semantic content. When that con-

7By ‘pretheoretic’ here I mean prior to a philosophical theory of semantic content, not necessarily prior to
scientific theories pertaining to signalling behaviour.
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tent is true (i.e. when the truth condition of a signal obtains), receiver behaviour
can be successful at a level greater than chance.

The question the naturalist must answer is what property of signals should be identi-

fied with their having semantic content. The way teleosemantics defines semantic content

is via a specific kind of theoretical device called a Normal explanation. A Normal expla-

nation has many things in common with explanations as usually understood by scientists

and philosophers. Normal explanations have an explanandum and explanans, and the facts

adduced in the explanans are supposed to show how or why the phenomenon mentioned in

the explanandum comes about. But Normal explanations are special in that both explanan-

dum and explanans are constrained to be of a certain form. The explanandum is always how

the ancestors of a given device performed a specified proper function that this device now

has. This explanandum is relativised to a particular proper function of a particular (usually

present-day) device. But the explanandum is not how this device performs the function. It is

how its ancestors did it:

NORMAL-EXPLANANDUM: Historically usual successful performance of a par-
ticular proper function (in particular, of a signalling system).

Of course there will be many different explanans across the range of different kinds of

proper function. Things get interesting when we restrict our attention to sender-receiver

systems. In that case, Millikan claims (and I argued in chapter 4) that the explanans must

cite a relation:

NORMAL-EXPLANANS: Signalling systems historically performed this func-
tion in part by having signals that bore particular relations to success-relevant
world affairs.

The full explanans would cite how the consumer reacted to the signal, and how this
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produced success in part as a consequence of the relation borne by the signal to the world

affair (as told in chapter 4 and section 5.2).

Consider two contrast cases. First, imagine a hypothetical sender-receiver system that

does not achieve success at a rate better than chance. (Suppose bees only perform dances

in random directions, and so receivers never do better than if they forage alone.) Then there

is nothing to explain, or certainly nothing that could appeal to a relation between a signal

and a success-relevant world affair. Second, imagine a system whose ancestors all achieved

success in different ways. (Suppose each generation of bees is born with randomised dancing

and dance-following strategies, but by sheer chance has improved its foraging as a result.)

Then there is no single set of mapping relations – because no signal mapping rule – that

signals bear towards world affairs. That is why Normal explanations must be univocal.

Teleosemantics defines semantic content as a signal’s being-supposed-to-bear-a-relation.

What relation? The one picked out by the Normal explanation of its ancestors’ proper func-

tioning. When the signal bears this relation, it is true. When it does not, it is false. This is

how semantic content is to be understood naturalistically, for the purposes of applying it in

PRETHEORETIC-EXPLANANS.

In a sense, the teleosemantic understanding of PRETHEORETIC-EXPLANANS simply sub-

sumes a present case of successful behaviour under a historical pattern. But it also gives

a causal story (assuming my account in chapter 4 and section 5.2 is adequate) because it

picks out the specific mapping rule signals must bear in order to cause success Normally.

In other words, PRETHEORETIC-EXPLANANS picks out the specific relation that enters

into the causal explanation of success of a present device. It does this because NORMAL-
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EXPLANANS picks out historical ancestors of that same relation.8

5.3.3 A rejoinder and further reply: The origin of mapping relations

I have laid out two types of explanation in order to show how teleosemantics conceives of

their relationship. But there is a third explanandum in need of an accompanying explanans.

Godfrey-Smith treats semantic content as an explanandum in its own right. A Normal ex-

planation may appeal to relations that obtained on historical occasions, but I have so far re-

mained silent on how those relations originate. There was a time in history when there were

no bee dances, hence no mapping relations of the waggle-dance variety. Nowadays, there are

many such relations. Surely this proliferation calls for explanation. Let us therefore define a

new explanandum:

ORIGIN-EXPLANANDUM: The evolutionary origin of a particular set of map-
ping relations.

Godfrey-Smith (as I read him) suggests that any reasonable explanans will render the ex-

planatory role of mapping relations problematic. That is because selection must surely play

some role in explaining the origin of mapping relations. Yet mapping relations are supposed

to play a role in explaining successful behaviour – and ‘successful behaviour’ in this context

just means ‘behaviour that gets the system selected’. If selection of a sender-receiver system

explains the origin of its mapping relations, and those same mapping relations explain how

the system is selected, we have a circular explanation.

It is important to note that the explanandum here is different from the two given earlier.

8I understand Millikan to be making the same point when she says that explaining the operation of a device
in terms of its purpose (including devices whose purposes are a consequence of historical selection) “is used
as a convenient way to give a definite description of the mechanism that is causally involved” (Millikan, 2007,
p. 441).
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PRETHEORETIC-EXPLANANDUM said nothing about semantic content. Even NORMAL-

EXPLANANDUM said nothing about mapping relations. It is only when we ask about the

origin of mapping relations that the threat of circularity seems to arise. Normal explanations

themselves say nothing about the origins of mapping relations, just that there must actually

be some relations involved if sender-receiver systems are to achieve success at a rate better

than chance. If there is a circularity problem, therefore, it depends on the explanans we give

for ORIGIN-EXPLANANDUM:

ORIGIN-EXPLANANS: Mapping relations arise through selection on a sender-
receiver system.

As we usually conceive of it, selection acts on things that already exist, preserving or de-

stroying them. If mapping relations are selected for, they must pre-exist selection. But

Godfrey-Smith (1996, p. 185) argues Millikan cannot assent to this. Millikan places no re-

strictions on what can count as a mapping relation. Any relation between a signal and the

world could count, as long as it engenders success. So the teleosemantic definition of se-

mantic content as mapping relations does not pick out some pre-existing relation between

a proto-signal and the world, that then becomes the semantic content as a consequence of

selection. Rather it identifies the relation after the fact. It is “post hoc, as far as explanations

of success are concerned” (Godfrey-Smith, 1996, p. 188, emphasis original).

Does this definition render explanations of success circular? It does not render the prethe-

oretic explanation circular, because that explanandum was a present instance of success, and

the explanans that mentions semantic content is interpreted in terms of past success. But

doesn’t this render any putative explanation of past success circular? No: for any given in-

stance of success, there is a lineage of systems that existed prior to it, and that lineage is
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what the Normal explanation (hence the definition of content) is concerned with. If we go

far enough back in time, the proto-signal will barely exhibit any kind of relation that can be

mentioned in a Normal explanation. But then the explanation of the system’s success will

not mention relations at all. That is as it should be: when we go far enough back in time, the

systems that eventually become signalling systems are not yet signalling systems. Mapping

relations are only available as part of a selective explanation once they have emerged from

earlier forms like cue-reading and purely causal mechanisms (section 1.5). The same is true

of any mechanical or relational feature of an adapted system.

In sum, separating out different possible explananda about signalling demonstrates that

there is no circularity in the teleosemantic definition of mapping relations. Before concluding

this section I will make the argument vivid with an analogy.

5.3.4 An analogy: the key shaped by doors

Imagine a long, long corridor with a sequence of millions of doors, each with an identical

lock. A person stands at the entrance to the corridor and begins walking. When they come

to the first door they take out of their pocket a thin blunt instrument made of a kind of soft

metal. They use it to jimmy open the door and walk through. In so doing, the instrument

gains a very faint impression of the lock’s inner mechanism. At the second door, the person

does the same thing, and again, by the time the door springs open, the lock has left a slightly

firmer imprint on the metal. Fast forward several million doors, and the combined effect of

myriad locks has worn the instrument down into what looks and works like a key. What is

more, since all the doors have the same lock, each subsequent door can now be opened much

more easily.
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If we wanted to explain, now, at door five million, how the person successfully gets

through the door, we would (I assume) be justified in saying they possess a key to the door.

We could subsequently pose a different explanandum, namely how the person came to pos-

sess the key. The explanans would perhaps cite the original blunt instrument, plus the impact

of millions and millions of doors on its form. There is a mutual interdependence between

these two explanations. This interdependence is a consequence of the fact that the key is

shaped by ‘feedback’ from each door. Each door opened made the next a little easier to open,

shaping the key a little more finely into the required shape. I take it there is no reason to

treat either of these explanations as circular. If we wished, we could install a micro-camera

inside each lock, showing exactly how the instrument is imprinted on by the lock at each

door. We would obtain a very detailed story of the origin of the key. This would not prevent

us explaining how the person opens the next door by citing the key – in particular, by citing

the fact that the key is a key for this door.

To be explicit about the analogy, the person corresponds to a lineage of sender-receiver

systems, the key is a signal, the lock is a world affair, and the key/lock relationship is the

signal/signified relationship.9 Each door is a generation, and each door-opening is a col-

lection of selective events that led to systems in the next generation being slightly better at

door-opening than previously. In other words, each door-opening strengthens the key/lock

relationship, just as selection can lead to more precise mapping relations.

Let us ask the question about circularity again. Does a key’s being shaped by door-

openings prevent it from being used to explain door openings? Obviously not, as long as you

9Note that I am not treating the person as sender, the key as signal, and the lock as receiver. That might be
a useful analogy to make on another occasion, but I am not making it here.
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do not try to explain one door-opening by reference to the key’s shape after that door was

opened. As long as temporal order is maintained, there is no circularity. That is why I have

introduced and emphasised three distinct kinds of explanation. The pretheoretic explanan-

dum is about a present case of signalling behaviour, corresponding to (say) door number

five million. The instances of proper functional success that form part of the Normal ex-

planandum correspond to a certain subset of previous door-openings, those for which the

instrument was genuinely key-like and not just a blunt instrument. The origin explanandum

asks how the instrument became key-like in the first place. The relationships between these

explanations do not prevent us from citing the key-lock relation when explaining how the

five millionth door is opened.

Finally, we might reasonably ask at what point the blunt instrument becomes a key. This

corresponds to questions about where pre-signalling behaviours such as cue-reading end and

signalling begins. I assume that in each case there is no firm threshold. After all, the same is

true of most functional behaviour in biology. Natural selection is a continuous process, but

it gives rise to distinct categories. We can precisely specify the mapping rules of signals like

the waggle dance despite the fact that it is continuous with earlier forms of behaviour that

could only reasonably be described as cue-reading.

5.4 Mapping and content

Teleosemantics identifies mapping relations with semantic content. This is among the more

controversial results of the theory. One motivation for this move is that folk psychological

explanations that appeal to content have a similar structure to natural science explanations
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that appeal to information. Folk psychology explains behaviour by referring to the contents

of mental states. Observing Fred moving towards the fridge, we might hypothesise that he

both desires a beer and believes that there is one in the fridge. The fact that this content is

truth-evaluable allows us to explain not just behaviour, but also success and failure. If Fred

returns from the fridge empty-handed, we may posit a false belief as the reason. In traditional

philosophy of mind, the canonical folk-psychological explanandum is reliably successful be-

haviour. Teleosemantics claims that the explanans consists of inner states that bear mapping

relations, which are derived from proper functions. This explanatory structure applies in bi-

ological contexts as well. Biological entities exhibit reliably successful behaviour, and they

often do this because they possess inner states that bear mapping relations to relevant distal

affairs.

The view that teleosemantics applies up and down the spectrum of biological-cognitive

sophistication is consistent with the idea that human psychological states are special in var-

ious ways. Sometimes teleosemantics is perceived as asserting no explanatorily salient dif-

ferences between, say, human intentions and the waggle dance.10 There are two reasons to

reject this characterisation. First, so far as I have described the theory, teleosemantics asserts

that mapping relations are a feature that biological and psychological states share. It does

not preclude other features – whether properties or relations – from distinguishing them. For

example, one proposed aspect of psychological states that is often cited as a desideratum of

theories of mental content is intensionality (Hutto and Myin, 2013, p.79ff). Nothing that has

10I have met at least one person who took Millikan’s view to be that individual beliefs are selected for
genetically, and therefore the semantic properties of beliefs are exactly equivalent to the semantic properties of
the waggle dance.
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been said so far precludes attribution of intensionality to mental states.11 Second, Millikan

has taken great pains to distinguish human psychological (and linguistic) phenomena from

biological (and less sophisticated cognitive) states.12

I might have dedicated a whole chapter to the differences between biological signals and

philosophically paradigmatic contentful states. In my opinion the most important difference,

for the purposes of explaining content-using systems, lies with decoupled representation.

The term has two connotations. First, sophisticated signals come to be purely descriptive or

directive, rather than equally both (Millikan, 2004b, Part IV). Second, sophisticated cogni-

tion enables representation of objects, events and individuals without necessarily triggering

an immediate response (Sterelny, 2003, §3.1). Both decoupling directive from descriptive

aspects, and decoupling recognition from response, are significant stages in the evolution of

communicative and cognitive sophistication. Explanations that appeal to decoupled repre-

sentations in either sense are typically aimed at flexible success. The idea is that the one-in-

one-out profile of simple signalling systems – including those with as sophisticated ‘codes’

as the waggle dance – does not enable a great deal of explanatory traction. Explanations that

appeal to content gain little or nothing over and above mechanical explanations of the same

phenomena (Shea, 2018, p.200ff.).

There is something right about the idea that content-involving explanations gain force

when systems use decoupled representations (in either of the two senses). But I maintain

that the basic explanatory pattern, of appealing to mapping relations to explain success, holds

11For independent reasons, Millikan (2018a) rejects the claim that mental states possess intensionality.
12For a small sample, see the distinction drawn between intentional icons and representations in Millikan

(1984, p. 96), the difference between human and animal mental representations in Millikan (2004a), and con-
siderations of the evolution of uniquely human cognitive abilities in (Millikan, 2004b, Part IV).
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even for primitive signals. It is because the resources used to transmit the signal are distinct

from the resources the receiver uses to perform the relevant act that signals are apt for infor-

mational – content-involving – explanation.

Another feature of philosophically paradigmatic content is its supposed precision. The

word ‘dog’ picks out a specific class of mammalian quadrupeds, whereas a vervet monkey’s

leopard alarm call may not distinguish leopards from cheetahs, or indeed any large ground

predator. This observation has led to objections raised against teleosemantics such as the

disjunction problem (Fodor, 1990) (Millikan, 1993, p. 7), and issues with modelling such

as the partition problem (Birch, 2014b, §6). I have elected to set these issues aside, for

a few reasons. First, the disjunction problem has received careful attention from Neander

(2017, §§7-9), and several of her responses might be borrowable to support sender-receiver

teleosemantics. Second, Griffiths (2018) argues that the disjunction problem is a conflation

of three ‘problems’, only one of which is serious – yet even then, the serious problem is not

fatal to teleosemantics. Third, Harms (2004) warns that we should not treat formal models

as attempts to translate the contents of biological signals into human language (Griffiths

(2018) appears to offer a similar warning). If this is right, we have no reason to hold up

linguistic content as a standard of precision that the content of biological signals fails to

meet. What is required from a specification of correctness conditions is no more than is

required from a specification of proper function – and this is just the kind of assignment evo-

lutionary biologists routinely make when they attribute adaptations. Fourth, human language

and conceptual content is not particularly precise anyway: sometimes ‘dog’ includes wolves,

sometimes it includes toy dogs. The goal of a naturalistic theory of content ought not be to

demonstrate that contentful states are as precise as philosophers assume they are, but to tell
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a plausible story about the evolution of contentful states that are only as precise as human

thought and language in fact are. This entails figuring out just how precise human content

is (as well as figuring out what ‘precise’ means in this context), but my point is that this is

something we need to discover rather than assume.

5.5 Mapping relations and communication theory
5.5.1 Variant and invariant aspects

According to teleosemantics, senders are supposed to produce signals that map. A mapping

is a relation that holds between a signal and its correctness conditions. Directive signals map

onto states of affairs causally downstream from the receiver, that it is a proper function of

the receiver to bring about. Descriptive signals map onto states of affairs that must occur

in order for the receiver to perform its proper function Normally. These may or may not be

causally upstream of the signal itself (figure 1.4, page 18).

Millikan (1984, 2004b) characterises mapping relations in terms of variant and invari-

ant aspects of signals. Invariant aspects are the same for all signals in a system, while variant

aspects differ between signals.13 Imagine a simple alarm call that has a certain pitch and du-

ration. These serve as its invariant aspects. Its variant aspects are the different times and

locations that it is emitted. We might say that, with respect to a particular system, invariant

aspects distinguish signals from non-signals while variant aspects distinguish signals from

each other.

13This sense of ‘invariant’ is different from both my own and Woodward’s notions of invariance discussed
in section 4.2.
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It may seem unintuitive that place and time should count as variant aspects. They are not

intrinsic properties, certainly. Nevertheless they are physical in the sense of being specifiable

in terms of physical properties and relations. For signalling systems that make use of only

one type of signal, there needs to be some variant aspect for that signal to gain traction on the

world. Place and time are the obvious candidates for variant aspects of simple signals. More

sophisticated signals may contain further variant aspects. Consider an alarm call whose pitch

varies with the proximity of a predator. Now, pitch is a variant aspect, along with the place

and time of the call. The alarm call of the black-capped chickadee varies in intensity with

the size of predators, and this variation is reflected in receiver behaviour (Templeton et al.,

2005). Perhaps the most famous example is the honey bee waggle dance, with its spatial

components indicating the direction and distance of food or viable nest sites (see the case

study on page 64).

Defined this way, variant and invariant aspects are necessary for informational measure-

ments to be made. If no variant aspect could be specified, there could be no transmission

rate in a signalling system. Here I am identifying variant aspects with the possible values of

X , the transmitted signal (see appendix A). If the signal had no variant aspects, there would

be at most one value of X . This sole value x would have a probability of 1. The entropy of X

would be H(X) = p(x) log 1
p(x) = 1× log1 = 1× 0 = 0. Transmission rate would therefore

be R = H(X)−H(X |Y ) = 0−0 = 0. This, I submit, is how to understand Millikan’s variant

aspects formally (at least for simple signals).

The transmission rate enabled by a code depends on (among other things) how many

variant aspects the code is able to induce in its codewords. Supposing the time and place of

transmission are fixed, a code with only one codeword could not support any transmission
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at all. A code with two codewords enables a rate of at most one bit per codeword; and so

on. Paul Revere’s apocryphal signal differentiated between two states of the world: that the

British were approaching by land or by sea. It carried one bit of information.

5.5.2 Mapping relations are neither codes nor strategies

In section 3.2 we saw that codes are a special case of strategies. How do they relate to

mapping relations?

To understand how mappings differ from strategies and codes, recall how each has been

defined. A strategy is a piece of selected behaviour, typically called an adaptation in biology,

that is formalised in game theory. A code is a special case of a pair of strategies that is for-

malised in communication theory. Mapping relations are relations that may or may not hold

between signals and world states and are cited in causal explanations of Normally successful

behaviour of receivers.

In the central model, encodings ensure mapping relations are borne between source

strings and encoded strings. The causal Source string-Encoded string relation runs in tandem

with the descriptive mapping relation, which explains how the receiver (decoder) achieves

success (reconstructs the string) at a rate better than chance. Conversely, the decoding rela-

tion runs in tandem with the directive mapping relation. This is a special case. Rarely does a

signal map exclusively to one thing that immediately causally precedes it and one thing that

is immediately causally subsequent. Figures 5.3 and 5.4 depict this situation for the basic

sender-receiver model and the central model.

It is the mapping relation between source string and encoded string that explains the re-

ceiver’s success in the first instance, not their causal relation. We can see this by exposing a
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Figure 5.3: Mapping relations for a basic sender-receiver model. The only goal of the
system is to match acts to states. Compare figure 1.4, page 18, which depicts the general
case in which the descriptive correctness condition is not causally upstream of the signal,
and figure 5.4 which depicts mapping relations in the central model.

Figure 5.4: Mapping relations in the central model. The goal of the system is to match
target string to source string. Compare figures 1.4 (page 18) and 5.3.

pattern of invariance between source string and encoded string. Intervening on both strings

has two interesting consequences. First, the causal connection between the two strings is

broken. That is because, in general, intervening on a variable breaks upstream causal con-

nections. Intervening on the encoded string therefore breaks its causal connection with the

source string. Second, patterns of invariance in the source string-encoded string relation can

be seen to explain receiver success. Recall, the receiver’s job is just to produce a string

identical to the source string. If there is no longer any causal connection, yet the receiver

is still successful, it must be the pattern of invariance (hence the mapping relation) that is

explaining success.
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5.5.3 Compression and transmission

There is a duality between the problems of data compression and data transmis-
sion. During compression, we remove all the redundancy in the data to form the
most compressed version possible, whereas during data transmission, we add
redundancy in a controlled fashion to combat errors in the channel.

Cover and Thomas (2006, p. 184)

There is a curious and provocative duality between the properties of a source
with a distortion measure and those of a channel. [...] This duality can be pur-
sued further and is related to a duality between past and future and the notions
of control and knowledge. Thus we may have knowledge of the past but cannot
control it; we may control the future but have no knowledge of it.

Shannon (1959, p. 350)

In line with our teleosemantic interpretation of communication theory, I shall argue that the

duality between compression and transmission can be understood in terms of the duality

between descriptive and directive mapping relations.

So far we have portrayed encoding as a strategy that converts source strings into signals.

A more sophisticated encoding process, that takes advantage of all the ingenuity of engi-

neers, would separate this strategy into two. First, it would throw out redundant aspects of

the original string that are not necessary to reconstruction. Communication takes effort, and

it would be better value for money to transmit as short a signal as possible. Second, the en-

coding process should add some kind of redundancy to the message so that a certain amount

of interference will not threaten attempts to reconstruct it.

The part of the encoder that does the first job is called the source coder (it comes right

after the source). Source coders remove redundancy from symbol strings. Suppose your

string is five hundred As followed by five hundred Bs. It would be a waste of space to
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Figure 5.5: The extended central model. The source encoder removes redundancies in
source strings, while the channel encoder judiciously adds redundancy to counter noise in
the channel.

transmit all one thousand symbols if there was a shorter way of transmitting the description

five hundred As followed by five hundred Bs. This first stage of encoding responds to the

pressure to save on signalling resources.

The second part of the encoder, called the channel coder (it comes right before the chan-

nel), reflects a competing pressure. No matter how pristine your telegraph wire, cosmic rays

and other inconveniences will interfere with electronic pulses sent along it. Strings that live

in Platonic heaven are free from interference, but lowly human-made signals cannot avoid

noise. To counteract noise you must judiciously insert redundant aspects into your message.

Suppose you send the same signal five times. Interference might affect each of those five

copies in different ways, but by taking the ‘average’ over all five received signals, the de-

coder might well be able to recover the original string. Sending five hundred As followed by

five hundred Bs five times might take less time and power then sending the entire sequence

once. It will certainly be more efficient than sending the entire sequence five times. The

central model can be extended by distinguishing source and channel coding (figure 5.5).

Less brute-force methods of ensuring redundancy have been developed and are staples

of introductory courses in communication theory. Suppose you want to send a four-symbol

string in which each symbol can be A or B. You can make your channel coder add three
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Figure 5.6: How the Hamming (7,4) code works. Taken from MacKay (2003, p. 9), the
original caption reads: “We arrange the seven transmitted bits in three intersecting circles.
The first four transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even: the first parity-
check bit is the parity of the first three source bits (that is, it is 0 if the sum of those bits is
even, and 1 if the sum is odd); the second is the parity of the last three; and the third parity
bit is the parity of source bits one, three and four.”

symbols to this string such that it is always reconstructed correctly, even if one of the resultant

seven symbols is flipped by noise in the channel. The first check-symbol, which will become

the fifth symbol of the transmitted string, is set to A iff an odd number of the first, second

and third symbols is A. That means the decoder knows to expect an even number of As

from the first, second, third and fifth symbols of the string. Then do the same thing with

the second and third check-symbols, with different combinations of the original symbols

(see figure 5.6). The result is a pattern of symbols whose original state can be recovered

correctly even if one of the resultant seven symbols is altered during transmission. (As an

added bonus, if two symbols are changed in transmission, the decoder knows that something

has gone wrong though they won’t know what it is. If three symbols are changed, however,

the decoder cannot know that anything has changed.)

Interestingly and not always noticed is that several common forms of channel coding

rely on mapping relations between symbols within the encoded message. The channel coder
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ensures relations hold between symbols of the code string so as to enable accurate reconstruc-

tion of the message. The code just described, which is called a Hamming (7,4) code after

its inventor Richard Hamming, is a basic, yet instructive, example. The relations induced

between original symbols and check-symbols are mapping relations. They tell the decoder

what combination of symbols is supposed to exist. The decoder can inspect the combination

and confirm whether or not that combination does in fact exist, fixing mistakes when they

arise. In other words, if the symbols do not map as they are supposed to, the receiver can

identify and rectify the mistake. In Millikan’s terminology, a Hamming (7,4) code string pos-

sesses many self-signs, symbols that represent themselves as well as other things (Millikan,

2017, §9). They are micro-signs, fine-grained and localised and doing a very specific job.

By gluing together the source coder and channel coder we get a coding scheme. Corre-

spondingly, the receiver comprises a channel decoder followed by a source decoder. Now we

can understand Shannon’s cryptic remark about knowing the past and controlling the future.

Source coding describes the optimal way to represent (‘know’) a string. Channel coding

describes the optimal way to reproduce a string at the receiver – to ‘control’ the downstream

operation.

5.5.4 Division of labour in animal signalling

In light of the division of labour between compression and transmission, consider animal

signalling. The states of the world about which animals have to signal are often very simple

indeed. They do not require finely articulated signals. As well as familiar subject matters

of nearby danger or readiness to mate, there are territorial claims and pre-fight preparations.

Signals that pick out these states need not be compressed, because there are so few possibili-
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ties in the first place. The details of such events are usually not complex enough to warrant

compression. Therefore, by associating encoding with sender strategies, most of the signal

design corresponds to channel coding rather than source coding. Most animal signals will

be geared towards adding redundancy for transmission rather than removing it for compres-

sion.14

Most animal signals are sent between animals with imperfectly aligned interests. Often,

overt signalling behaviour will be geared towards producing effects that benefit the sender but

not the receiver. Suppose overt behaviour can evolve faster than perceptual discrimination.

Then manipulative senders will tend to stay a step ahead of discerning receivers. If this is

right, the sender’s problem will be equivalent to that of the channel coder (as opposed to the

source coder). The sender has a response they want to produce, and their problem is not

compression but transmission: ensuring the response gets performed no matter what. By the

same token, the signal is more directive than descriptive. Those behavioural ecologists who

follow Dawkins, Krebs, Owren, Rendall and Ryan in claiming most animal signals skew

towards the influential end of the spectrum may well be right. This does not entail those

signals are out of reach of informational formalism. That a signal is designed to control

rather than represent does not place it out of reach of mathematics (see also section 7.5).

5.6 Projection and the containment metaphor

When we speak casually, we often treat relations as if they were properties. In everyday

speech this rarely causes problems. But those ersatz properties are sometimes made to do

14The source/channel coding distinction is relevantly similar to the strategic/efficacy design distinction; see
sections 1.4 and 7.2.
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explanatory work. Then the question arises, are such properties appropriate for scientific

theorising?

Philosophers have complained about inapt metaphors applied to signals. The relation

between signal and signified is often murky, leading to ambiguous explanations. These ob-

jections centre on a practice Godfrey-Smith calls the metaphor of containment:

The familiar philosophers’ language of ‘content’ is potentially misleading, as
it suggests that a meaning is either in a sign or not in it. The metaphor of
containment is probably a bad one. A signal may have many relations to the
world, relevant in different contexts.

Godfrey-Smith (2011, p. 1292)

The containment metaphor is operative when a signified is treated as if it were literally con-

tained within the signal. Describing the signified as the content of a signal, where ‘content’

is read as if describing objects in a box or liquid in a bucket, is an example. Signifieds

are neither contained within signals nor properties of them. Yet scientists and philosophers

routinely speak and write as if one or the other were the case.15

There are special cases in which signals or parts of signals are physically contained

within other things. Suppose I hand my partner a glass of orange juice, intending for them

to stop drinking wine. The liquid contained within the glass can constitute a signal that they

shouldn’t drink any more alcohol. But the glass-liquid relationship is not the same relation

as that between the liquid and the state of affairs that they shouldn’t drink more alcohol. A

15An examiner suggested a simpler response to the complaint that content attribution is metaphorical, as
an alternative to the response I offer in this section. The idea would be that content and related concepts are
indispensable for cognitive science, and that biology (and presumably the functional sciences in general) gets
along very well by redefining what were formerly metaphors as technical terms. For example, the terms cell,
adaptation, cooperation, altruism, and function were all metaphorical when originally applied to biological
contexts. Over time, their usage became literal, as their definitions became fixed and agreed upon. I don’t deny
that this strategy would work. But I think my assertions in this section offer insights worth having, too.
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world affair that is physically distinct from a signal cannot literally be a property of that

signal, yet our typical patterns of speech make it seem as if they are. Can we make sense of

such linguistic practices?

Several philosophers invoke the containment metaphor to explain (and, typically, criti-

cise) these patterns of speech. Rendall et al. (2009, Appendix) object to these linguistic pat-

terns in explanations of animal communication. Though they use the term conduit metaphor,

the explanatory pattern they are objecting to is equivalent to the containment metaphor. They

object that “this metaphorical approach also carries with it a definitional sleight-of-hand that

undermines its scientific integrity” (Rendall et al., 2009, p. 240). By failing to adequately

define the substance supposedly transmitted along the conduit – contained within the signal

–, researchers leave a significant explanatory gap. The authors conclude that explanations

making use of this metaphor should be discarded.

Rendall and colleagues build on a famous demonstration by Reddy (1979) that En-

glish speakers commonly draw on the conduit metaphor when describing linguistic meaning.

Reddy’s appendix includes hundreds of examples of everyday constructions that rely on the

conduit metaphor. Strangely, Reddy’s depiction of the metaphor as a metaphor leads him

to endorse another kind of view of language that was soon to be criticised: the code model.

Reddy (1979, p. 287) says that language “seems rather to help one person to construct out of

his own stock of mental stuff something like a replica, or copy, of someone else’s thoughts - a

replica which can be more or less accurate, depending on many factors.” This view, under the

label of the code model of communication, was later rejected by Sperber and Wilson (1986).

Indeed, Rendall and colleagues’ reasons for rejecting the conduit metaphor are equally good

reasons to reject the code model. Opinion among contemporary linguists is ecumenical: dif-
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ferent models serve different purposes. None are exclusively correct, but none are forbidden.

Along similar lines, Hutto and Myin (2013) argue that the containment metaphor leads

cognitive scientists astray. In explaining cognition, scientists often advert to information be-

ing “extracted, retrieved, picked up, fused, bounded up, integrated, brought together, stored,

used for later processing, and so on and so forth” (Hutto and Myin, 2013, p. 63). Hutto

& Myin reject that such claims can be literally true and, like Rendall and colleagues in the

context of animal signalling, claim they are at best metaphorical. Their suggested revision

to explanatory practice allows that only physical objects are manipulated. Scientists have

confused the transmission and transformation of physical objects for the containment and

conveyance of some abstract substance.

It seems to me that these authors are mostly right in their analysis of explanatory patterns

in biology and cognitive science. But calling the practice metaphorical and leaving it at

that is too quick. One reason for caution is that philosophers are apt to associate metaphor

with fiction. Levy (2011), for example, uses the terms interchangeably (though he draws

on a reasonably sophisticated account of fiction due to Walton (1990)). We need to be a bit

more subtle. Mapping relations are not properties of signals – signifieds are not ‘contained

within’ signals – but there is a legitimate way of describing a relation as a property, a way

I will call projection. To denounce the practice of projection as metaphorical is to ignore

other linguistic strategies, and to miss the literal truth they rely upon. The problem is not

just that scientists confuse the vehicle/content distinction, or illicitly borrow a model from

communications engineering. It is that we do not know how to think about relations, so we

often choose to treat them as properties instead.

When we use projection, we take what is strictly a relation and describe it as a property
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of one of the relata. The linguistic phenomenon by which relations come to be described as

properties or contents is not metaphor – at least, not metaphor in the pejorative sense that

philosophers of science tend to invoke. Treating a relation as a property of one of the relata

is a verbal or conceptual shift that is more or less apt depending on how ‘fixed’ the other

relatum is. This is more like synecdoche or metonymy than metaphor.16 For example, I am

a brother, my sister is a mother, her children are both nephews. We can define ‘brotherhood’,

‘motherhood’ and ‘nephewhood’ if we like, abstracting away from the diverse relata that

make people brothers and mothers and nephews. When it does not matter to whom our focal

agent bears the relevant relation, the agent can be treated as possessing a property instead. In

other words, when relata can reasonably be treated as invariant, relations can reasonably be

treated like properties. In this case we treat a relatum as representative of the whole relation.

It is acceptable so long as context makes clear either what the other relata are, or that their

identities are irrelevant to the point being made.

Hofstadter (1979, pp. 171–2) offers an analogy between meaning and weight. Your bath-

room scales do not measure mass, despite showing quantities in kilograms. They measure

weight. On the surface of the Earth, weight is converted from Newtons of force into kilo-

grams of mass thanks to gravitational acceleration serving as a constant conversion factor.

Weight is a relation between two bodies, but when one of those bodies is assumed to be fixed

(the Earth’s gravitational pull is a fixed feature of most bathroom scales’ environments) we

can bracket the second relatum and think of the relation as a property. Dretske (1981, p. 80)

16Synechdoche: “A figure of speech in which a more inclusive term is used for a less inclusive one or vice
versa, as a whole for a part or a part for a whole”; metonymy: “(A figure of speech characterized by) the action
of substituting for a word or phrase denoting an object, action, institution, etc., a word or phrase denoting a
property or something associated with it, e.g. as when referring to the monarchy as ‘the crown’ or the theatre
as ‘the stage’; an instance of this” (both from Oxford English Dictionary, 2020).
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and Haugeland (1998, p. 360 n. 28) make much the same point.

In general, fixing one or more relata allows a relation to be viewed as a property. This

is projection. When conceived as a property of an object, weight is a projection. ‘Being a

sibling’ is a projection from the relation between siblings to a property of an individual. To

take a more scientific example, sufficiency (as in the phrase ‘sufficient statistic’) is a property

of a statistic with respect to the sample from which it was calculated. A statistic is sufficient

when no further information can be calculated from the sample that cannot also be derived

from the statistic itself. Sufficiency, as a property of a statistic with respect to a sample, is

therefore a projection.

Analysing properties as relations in disguise has philosophical pedigree. Relativist con-

struals of probability and value treat these not as intrinsic properties of events or objects, but

as properties borne only with respect to an agent’s perspective. The fitting attitude account

of probability and value is an example (Rabinowicz, 2015). However, the majority of such

accounts relativise properties to agents’ mental states: they are subjectivist theories. In the

present project, I have argued for a relativist reading of properties ascribed to signals, but

with respect to proper functions rather than mental states. I suspect that many subjectivist

accounts of philosophically interesting properties have a relativist version. Subjectivist the-

ories’ relativist counterparts result from discarding the agent’s mental states and retaining

only its proper functions.

Projection is not metaphor. It is a pattern of speech. The relations and ersatz properties

involved are more closely linked than the source and target of a typical metaphor. It would

be wrong to assume that any attribution of properties is either literal or figurative, as though

there were no other kind of linguistic strategy. Furthermore, words change their meanings
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based on usage. If we were to consider as literal only the original meanings of English

language terms, every utterance of every scientist would be metaphorical: scientists cannot

literally refer to electrons, because the word ‘electron’ derives from a Latin word meaning

amber-like (and a Greek suffix) and the elementary particle to which the word refers is noth-

ing like amber. If that argument is incoherent, then so is the claim that scientists cannot

literally appeal to semantic content. If there are such things as mapping relations, then they

are what is being literally referred to by semantic content talk. This is true even if the surface

grammar of content-talk attributes a property rather than a relation.17

Up to now we have considered cases in which the relation between a signal and its sig-

nified has been grammatically marked as subject-predicate. For example, ‘the content of the

signal is X’ takes the content of the signal as subject and predicates X of it. There is also the

case where the signal/signified relation is marked as subject-verb-object. In describing and

explaining the cognitive state of a frog as it reacts to the appearance of a fly in its immediate

environment, we might say the frog’s neural state signifies the fly. This should be (and pre-

sumably is) regarded as equally dubious by opponents of the containment metaphor. A signal

cannot really signify its signified, if signification is an action. Signification (representation,

registration, indication) is not an act performed upon an object by a signal.

One benefit of the subject-verb-object construction is that it highlights the asymmetry

in the sign-signified relation. The appropriate analysis is probably the same as that argued

above. What is being stated is the existence of an asymmetric relation between signal and

17What happens when we legitimately use projection and then capture the resulting property in a causal
model? Wouldn’t that lead to a causal role for content, contra my claims in section 4.2? Yes, and this is all the
more reason not to use projections in causal models. This seems to be what has happened, for example, in the
account sketched by O’Brien and Opie (2015) (and perhaps also Cummins (1996)). For them, content explains
proximate behaviour primarily and success secondarily; for teleosemantics it is the other way round.
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signified. In English, our two main tactics for expressing such a relation are the projection

tactic (leading to a subject-predicate construction) and what might be called the action tactic

(leading to a subject-verb-object construction). Short of extending the language, it is not

clear what more the sceptic can reasonably ask of the realist.

In a system with network structure, the containment pattern gives rise to a processing

pattern. In a signal processing system like a computer, different electrical impulses are pro-

duced, transmitted, destroyed or transformed. Hutto and Myin (2013, p. 63) point out that

it is only the signals, not the signifieds, that are having these things done to them. But

they do not tell us what is happening to the relevant mapping relations. Why not say a re-

lation is transformed or destroyed when one of its relata (supposing there to be only two)

is transformed or destroyed? To reject this would require one to adopt a strange linguistic

prescription. You must demand that every verb in your theory apply literally to objects and

properties and only metaphorically to relations. I do not believe this is a good rule to live

by. I do not think we should exclude relations from our explanatory repertoire. If prop-

erties explain, so do relations. Sometimes, making sense of scientific explanation requires

taking note of the grammatical constraints scientists face. Until we have a formal account of

explanation we must remain, as the saying goes, eternally vigilant.

5.7 Conclusion

Mapping relations promise to illuminate explanatory patterns shared by signals in the central

model and biological signals. Problems interpreting teleosemantic theory can be resolved

by paying close attention to different explananda. The teleosemantic distinction between
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directive and descriptive mapping relations corresponds to the duality between compression

and transmission. And the question how semantic content can be a ‘property’ of signals

should be answered by paying attention to the different linguistic strategies available for

expressing relations between signal and signified.



Chapter 6

Sense and sense stability

6.1 Introduction

The problem addressed in this chapter is how teleosemantics can accommodate the content

of signals sent between uncooperative agents. I argue that in light of recent work, prospects

are good for formalising teleosemantics in a manner that adequately captures conflictual

content.

According to teleosemantics, states and processes bear meaning when they stand as inter-

mediaries between cooperating senders and receivers. Cooperation results from coselection

or joint design. Signal content is defined as the mapping relation(s) that explain system suc-

cess. Teleosemantics appears to assert a strong link between correctness and cooperation.

However, signalling in nature is rarely (if ever) a consequence of perfect coadaptation.

Except perhaps for certain cases of intra-organismal signalling characterised by extreme com-

mon interest, selection provides incentives for signallers to exploit or deceive each other.

Teleosemantics describes an ideal which nature fails to live up to. Proponents of the theory

hope that signals in uncooperative contexts can be attributed meaning based on (possibly hy-

pothetical) perfectly cooperative contexts. For example, Millikan (2004b) considers systems

with the function of producing false representations. She argues that the contents of these

representations must derive from a prior cooperative mechanism:

[M]any biological systems ride piggyback on systems developed earlier for

224
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other purposes. Systems whose jobs were to distort certain beliefs would have
to ride on more general systems whose basic jobs were to produce true beliefs.
Otherwise there would be no standard mapping rules according to which the
distorted beliefs were designed to map world affairs hence according to which
they were false.

Millikan (2004b, p. 86)

The thought is that by defining content with respect to cooperative systems, we can assign

meanings to uncooperative signals based on their cooperative counterparts. Intuitively, the

bad cases are derivative on the good.

Success on this view is defined in terms of stability: signals serve joint proper functions

and a joint proper function is a stable interaction between two or more agents. Correctness

conditions are just those states of affairs that promote the interaction recurring. In short,

it is more accurate to say that teleosemantics asserts a strong link between correctness and

stability. However, it is not easy to cash out this intuition in detail.

Fortunately, two distinct mathematical approaches also link correctness and stability, and

can be used to describe systems that lack full cooperation. In this chapter I argue that costly

signalling theory, understood in its most general form, provides resources to support a

teleosemantic interpretation of signalling with divergent interests. That is because costly

signalling theory applies more broadly than the economic and biological contexts in which

it was first proposed. Signalling is costly no matter who does it. It is costly because all

behaviour is costly, and signalling is a kind of behaviour. Formulating and sending signals

takes energy and time. Receiving and responding to signals takes energy and time too. Phys-

iological and opportunity costs are borne by all senders and all receivers. No matter who,

how or why, signalling is costly.



Chapter 6. Sense and sense stability 226

But there are benefits that offset these costs, and a fundamental way to explain signalling

behaviour points toward the trade-off. All signalling systems that bear costs can be anal-

ysed within a common framework. The branch of engineering called rate-distortion theory

employs the same framework. It delivers results about optimal signal strength and transmis-

sion rate with respect to communicative goals. Happily, costly signalling theory has pro-

duced similar results, though their kinship seems to be neglected. To my knowledge, only de

Polavieja (2002) and Martínez (2019) explicitly mention the links between them. Yet, I will

argue, their relationship dramatically improves the prospects of a teleosemantic approach to

meaning.

This chapter demonstrates how to expand teleosemantics to encompass signalling partner-

ships with divergent interests. The chapter proceeds as follows. I raise the problem (section

6.2) and survey existing proposals due to Artiga (2014a) and Shea et al. (2017) (section 6.3).

With the use of a generalised sender-receiver model (section 6.4), I describe the common

structure of teleosemantics, costly signalling theory and rate-distortion theory (section 6.5).

Then, I argue that functional content is a reasonable formalisation of teleosemantics that at-

tributes content in systems with divergent interests (section 6.6). This could be viewed as

either a novel extension to, or simply an interpretation of, teleosemantics. Toward the end of

the chapter, I respond to an objection (section 6.7).

6.2 The problem of conflict

We live in a disputational world. A multitude of beings scramble for finite resources. Conflict

is everywhere; common interest is rare. The energy bound up in an organism’s body is at
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risk of being metabolised by predators. Even creatures not actively trying to destroy each

other are looking to gain an advantage by exploiting their fellows. Many kinds of behaviour

serve the antagonistic ends of biological agents, including signalling. Consider the case of

fireflies of the genus Photinus, cited by Stegmann (2009, §2), Skyrms (2010, §6) and Artiga

(2014a, p. 362ff.), and described in the following case study.

Firefly predation

Many fireflies use flash patterns to signal to conspecifics, especially during mating

season. Members of the genus Photinus display the following courtship behaviour.

Males flash a species-specific pattern in an area where one might reasonably expect

females to be. Upon receiving the signal, and if she is willing to mate, the female

flashes back her own pattern. The character of the flash pattern is important for species

recognition (Lloyd, 1975). If he receives a favourable response, the male approaches

the female to mate.

All seems well with this communication system. Especially because different species

emit distinct patterns, the risk of accidental crosstalk is minimal. Unfortunately, in-

terference comes from a different genus of firefly. Females of the species Photuris

versicolor have a vested interest in tapping the line of Photinus and other susceptible

prey. The predator answers male flashes by emitting a reasonable imitation of the

female response. When the male approaches, the predator catches and eats him.

The case of the fireflies, and many more like it in nature, poses a challenge to sender-

receiver teleosemantics. The content of a signal is the state of the world picked out by its

mapping rule. Mapping rules are determined by coevolution between sender and receiver.
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Content is defined in terms of historical cooperation. In the firefly case, the predator is

being decidedly uncooperative. So, teleosemantics seemingly cannot ascribe content to the

predator flash.

On the face of it this conclusion might not trouble us: without cooperation there is no

joint success to explain, so no work for content to do. There is no reason to posit content

because there is no explanatory burden for it to bear. Nothing is lost, therefore, by taking

such signals as P. versicolor’s imitative flash to be contentless.

We will, however, face trouble when trying to accommodate this result with scientific

practice. Biologists routinely offer explanations for conflictual signalling in terms of content.

They attribute the same properties to conflictual and cooperative signals. One marker for

such practice is the use of terms like ‘deception’. Deception usually implies false content,

and this is indeed how biologists use it. A recent spurt of papers seek to determine what

else the concept entails (Martínez, 2015, 2019; McWhirter, 2016), but those issues are not

relevant here.

Take the firefly case. Lloyd (1975, p. 453) describes the flash pattern of the predatory

firefly P. versicolor as a “false signal”, as it mimics the flash patterns of its prey species.

Many other descriptions of biological signals under conflict appeal to their putative content.

So we are left with a dilemma. We must either show that teleosemantics attributes content

in these cases, or advance a revisionary account of a popular scientific practice.

At this point Millikan’s own account of uncooperative senders seems promising. The

predator’s deceptive flashing pattern “rides piggyback” on the cooperative flash system (Mil-

likan, 2004b, p. 86). The deceptive flash has content because it mimics a cooperative flash,

whose content is determined according to the standard teleosemantic story. This is, more or
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less, the account I shall endorse. However, there is a lot more detail to work through before

this line of thought can be accepted. Millikan tends to mention these kinds of cases only in

passing. She does not dedicate the same amount of precision to uncooperative signals as can

be found in the paradigmatic teleosemantic account of cooperative signalling.

To develop teleosemantics into a theory that can account for conflictual signalling, it

will be useful to show how content is determined for signals across a range of contexts of

greater and lesser cooperation. I argue that recent formal work promises to help teleose-

mantics meet this challenge. Moreover, expanding the remit of teleosemantics to include

partial cooperation, and even extreme conflict, reveals further coherence with the formalism

of communication theory. The rest of this chapter argues for these claims. First, I survey

recent work that aims to solve the puzzle.

6.3 Existing solutions
6.3.1 Artiga’s solution

Artiga (2014a) reconstructs the problem as an inconsistent triad:

• TELEOSEMANTICS: roughly, the claim that sender-receiver teleosemantics defines rep-

resentational content (Artiga, 2014a, p. 360).

• MIMICRY: “The light emitted by [Photuris] is a signal, which means something like

[female Photinus] willing to mate” (Artiga, 2014a, p. 363).

• INCOMPATIBILITY: TELEOSEMANTICS is incompatible with MIMICRY (Artiga, 2014a,

p. 363).

At least one of the three must be given up or amended. Artiga explores two responses in
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depth: rejecting MIMICRY and rejecting INCOMPATIBILITY.

First consider rejecting MIMICRY. On this option, the predator’s flash is not in fact

contentful. Explanations of receiver behaviour that advert to relations supposed to be borne

between signal and world are faulty, because there are no mapping rules underpinning them.

A different explanation should be offered for the receiver’s behaviour.

How can we explain why the male approaches upon seeing the flash, if not by reference

to the flash’s content? We could point to the physical properties of the signal. The predator

flash is similar enough in form to female flashes that elicit the same response. It need not

possess content to do so. A token flash is a triggering cause: we advert only to its form when

explaining behaviour. And when it comes to explaining receiver failure, we advert not to

false content but to the fact that the signal had no content at all.

By rejecting MIMICRY, we assert that the phenomenon of mimicry is the reproduction of

form only. To take a different example, warning colouration on edible frogs is not false con-

tent. It contentlessly reproduces colouration that in another context has content and is true.

This move is revisionary, although it doesn’t seem drastically so. Rather, the interpretation

of ‘mimicry’, ‘deception’ and so on changes. The revision is not to the usage of terms, but

their interpretation.

One point in favour of this move is that it mirrors our response to the problem of non-

cues (section 1.3). Recall, tokens that are not produced by the same natural processes as

cues of type C are not cues (or at least not cues of type C) and so do not bear the appropriate

correspondence. The same can be said here. Tokens that are not produced as part of the

same signalling system are not signals (or at least not the same signals) and so do not have

the same content.
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However, there are several problems with rejecting MIMICRY. First, Artiga notes that

it seems ad hoc. Revising biological explanation for philosophical purposes requires strong

justification. If there is no good reason to reject mimicry except to save teleosemantics, then

teleosemantics had better be an extremely well supported theory – not just philosophically,

but by the lights of science as well. Perhaps such a route is viable, but it is probably best

to keep it as a last resort. Second, MIMICRY embodies the fundamental principle that truth

explains success and falsity explains failure. If we reject it, we forego the ability to appeal

to falsity in explaining failure. And this is tantamount to admitting that we do not need to

appeal to truth to explain successfully coordinated action. If male behaviour upon receipt of

predator flash is explained by that signal’s form only, why should we explain male behaviour

in response to the female flash in terms of that signal’s content? Contentless explanation

metastasises. This is bad news for teleosemantics. In what follows, I leave aside the possi-

bility of rejecting MIMICRY.

A more hopeful option is rejecting INCOMPATIBILITY. There are two ways this might go.

First, the predator’s signal system can be considered a member of the same biological kind

as the female’s signal system. Then there is just one sender type, and it has partial common

interest with the receiver. Second, although predator and female are different senders, the

signals they produce can be considered members of the same kind. Then they have the same

content because they have the same function.

I will consider the ramifications of both options in a moment. Before that we will look

at a more formal way of describing content in signalling systems with divergent interests.
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6.3.2 Shea and colleagues’ solution

While Artiga gives informal arguments supporting teleosemantics, another way to explore

the same issues is through the lens of formal models. Shea and colleagues aim to expand the

formal repertoire provided by Skyrms (2010). Skyrms’s statistical content captures correla-

tional relationships between signals and world affairs. Shea et al. (2017) define functional

content, geared towards capturing conditions that contribute to stability of a signalling sys-

tem. This explanatory role was earlier pointed out by Godfrey-Smith:

A signal might do little to the probability of w1, and raise the probability of w2

much more, while it is the link to w1 that explains why the relevant sender and
receiver dispositions have been stabilized. Then the signal has a special kind of
involvement with w1, despite the weak probabilistic connection.

Godfrey-Smith (2011, p. 1292), variables changed for consistency

The idea is to pick out conditions that were present when a signal was sent, which together

with the receiver’s behaviour upon receipt of that signal, contributed to stability of sender

and receiver behaviour. Both statistical and functional content are vectors that describe, for

a given signal, relationships between it and world affairs. Statistical content captures prob-

abilistic relationships, saying how likely a world affair is given that a signal was sent. In

contrast, functional content captures relationships of functional relevance, capturing “the de-

gree of involvement of that state in the stabilization of the sender’s and receiver’s behaviours

regarding that signal” (Shea et al., 2017, p. 8).

Here is the thought behind functional content (see appendix C for details on how to

calculate the vector). Focusing just on descriptive correctness conditions, a behavioural

response is said to be stabilised by a state of affairs when that behaviour together with that

state of affairs brings a greater than baseline payoff. Baseline payoff is what signallers
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would have enjoyed had the receiver acted without conditioning its behaviour on the signal.

Therefore, signals that prompt beneficial responses continue to promote those responses in

future. Crucially, because a certain world state or states played a role in that stabilisation, a

relation can be drawn between those states and the signal.

An example helps distinguish functional content from statistical content. Consider the

following game:

P(W ) =

(
1
3
,
1
3
,
1
3

)
, Qs = Qr =


7 0 2

4 6 0

0 5 10

 , m = 2 (6.1)

In the absence of signalling, the receiver’s best act is a3. The baseline payoff is
(1

3 ×2
)
+(1

3 ×0
)
+
(1

3 ×10
)
= 12

3 = 4. Because there are only two signals available, the players are

restricted to a bottleneck like that depicted in figure 6.1. Two signals are used to distinguish

three states. What is the functional content of s1 and s2?

First look at s2. It is used only in w3 and drives only a3. The first two components

of the functional content vector are therefore zero, because the signal is never the result of

the corresponding states (formally, p(w1|s2) = p(w2|s2) = 0). The third component of the

functional content vector depends on the payoff achieved in state w3. In this case qs
33 =

qr
33 = 10, which exceeds the baseline (of 4) by 6. The raw components of functional content

are therefore (0,0,6). These values are normalised to give the functional content vector

F(s2) =< 0,0,1 >.

Now consider s1. The third component of its functional content vector is zero because

the signal is never the result of state 3 (formally, p(w3|s1) = 0). And the second component
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Figure 6.1: A bottleneck system in which functional content differs from correlational
content (Shea et al., 2017, fig. 3 p. 14). Sender and receiver payoffs are the same. (Note
that this is not strictly a causal model: here, nodes represent values of variables rather than
variables themselves.)

is also zero, because the relative payoff of acts in that state does not exceed the baseline (for-

mally, Σk p(ak|s1)q2k = (1×4+0×6 = 4 ≤ 4). The first component depends on how much

the payoff achieved in state w1 exceeds the baseline, and the probability that w1 is actual

given s1 was received: p(w1|s1)(q11−q) = 1
2 ×(7−4) = 1

2 ×3 = 3
2 . The raw components of

functional content are therefore (3
2 ,0,0). This vector is normalised so the functional content

vector is F(s1) =< 1,0,0 >.

So the functional content of the first signal is < 1, 0, 0 >, and of the second < 0, 0, 1 >.

However, the first signal is also sent in the presence of state 2. Since states 1 and 2 are

equiprobable, the statistical content of the first signal is < 1
2 ,

1
2 , 0 >, which differs from its

functional content.

Returning to the fireflies, functional content is easily calculated once the scenario is mod-

elled. We have two states corresponding to female and predator, two signals corresponding

to flash and no flash, and two acts standing for ‘approach’ and ‘stay away’. Payoffs can be

set as follows:
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Figure 6.2: A hybrid equilibrium in the deception game (adapted from Shea et al. (2017,
fig. 5 p. 17). As a representation of the firefly example, w1 stands for a female firefly being
present and w2 stands for a predator being present. s1 is the species-specific flash pattern,
while s2 stands for an absent signal. The male firefly can either approach (a1) or ignore (a2).
Solid arrows indicate a deterministic strategy – females always flash, males always ignore
an absent flash – while dashed arrows indicate a mixed strategy. (Again, this is not strictly
a causal model: here, nodes represent values of variables rather than variables themselves.)

P(W ) = (p(female), p(predator)) , Qs =

2 1

2 1

 , Qr =

2 1

0 1

 , m = 2 (6.2)

A stable strategy pair for a similar game is depicted in figure 6.2.1 Because both fe-

male and predator send signal s1 in this model, its functional content is < 1, 0 >. Treating

functional content as truth-evaluable, predator flashes are therefore false.

What about the statistical content of the firefly flash? Flashes are sometimes given by

females, and sometimes by predators. There is a positive correlation between the signal and

both states. Therefore, the statistical content has positive values in both parts of the vector:

< log p(female|signal)
p(female) , log p(predator|signal)

p(predator) >. This indicates that the probability of both female

and predator is increased upon sending of the signal, though the probability of female is

increased more (on the assumption that females are more prevalent and/or better at accurately

1Shea et al. (2017, p. 17) take the game to represent sexual signalling in which the two senders are high-
type and low-type males. In our case, the receiver payoff upon responding favourably to a predator signal
should perhaps be less than zero. However, I have kept the payoffs the same for ease of comparison. Certainly,
if predators became too prevalent in the population (if p(predator) became too high) the strategy pair depicted
in figure 6.2 might no longer be stable.
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sending the signal than predators).

Interestingly, female signals correlate with predators and predator signals correlate with

females. Statistical content describes all the possible states that co-occur with a signal. Func-

tional content is motivated by the need for explanatory work of a different kind. It says why

signals continue to be sent. Functional content in the firefly system refers to females only,

because it is only females whose signals promote system-beneficial behaviour.

Although Shea et al. (2017) do not commit to the theory, functional content is a way to

formalise sender-receiver teleosemantics. Functional content captures the same explanatory

role for content that teleosemantics aims to explicate. When a signal brings mutual benefit

due to a combined effect of the receiver’s act and some external world state, that signal bears

an explanatorily relevant relation to that state. This is at least implicit in scientific theoris-

ing about biological signalling, and functional content offers to formalise those explanatory

practices.

Finally, it is worth noting that functional content can be defined such that the same signal

possesses two different functional content vectors, associated with sender and receiver. Re-

call, vector components of a signal are zero when it fails to prompt a greater-than-baseline

payoff. But some signals may cause behaviours that bring greater-than-baseline payoff to

the receiver but not the sender. Then we can distinguish two functional content vectors: one

associated with the sender, that contains zero for this particular vector component; and one

associated with the receiver, for which this vector component has a positive value. Distin-

guishing these vectors may help elucidate selective forces that act differentially on agents

in evolutionary interactions. Senders are more motivated to send signals with positive func-

tional content vectors. Indeed, individualised vectors would quantify, in some sense, the
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motivation for each agent in using the signal. Especially in cases where interests diverge,

different states will play a stabilising role for sender and receiver strategies. In the firefly

example, all functional content vectors have entries that are either zero or 1. The definition

of functional content therefore formalises Millikan’s account for these signals: all signals

have a unique content, and deceptive signals gain false content as a result of mimicking co-

operative signals. The power of the functional content definition lies in the ability to capture

mixed contents; cases in which more than one vector entry is positive, and so upon being

normalised these entries take values other than zero and 1. In this sense, the account might

be considered a generalisation of teleosemantics: it goes beyond signals with precise content

and offers to capture vague cases.

6.3.3 Artiga’s options correspond to modelling choices

Artiga considers the relative merits of rejecting MIMICRY and rejecting INCOMPATIBILITY.

In the context of signalling games – especially in light of functional content – rejecting

INCOMPATIBILITY is the better option. Recall there are two ways to pursue this option.

Either predator sending-mechanisms are categorised as the same type as female sending-

mechanisms, or predator signals are categorised as the same type as female signals. These

two options correspond to two different ways of modelling the firefly system. Categorising

predator sending-mechanisms as the same type as female sending mechanisms corresponds

to modelling senders as a single type with partial common interest with receivers, as in model

6.2 above. Alternatively, categorising predator signals as the same type as female signals

corresponds to modelling senders as two different types, one of which has full common

interest with the receiver, the other of which has fully conflictual interests with the receiver.
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The first model is depicted in figure 6.2. Predator and female signals have the same func-

tional content. Signals are true when sent by females and false when sent by predators. This

is probably the canonical way to model the situation. Skyrms (2010, §6) discusses alterna-

tive representations, but asserts that this option captures the deceptive, contentful aspect of

the predator signal (even though he works with statistical rather than functional content).

Consider the second option, on which two different types of sender can send the same

type of signal. We can even model these as different signals that are indistinguishable for the

receiver.2 Now signals have different functional content when produced by different senders.

Female signals have the usual functional content. Predator signals have no functional content

(or at least a vector with only zero entries), because no receiver act brings greater-than-

baseline payoff for both parties simultaneously. Predator signals would, however, have an

individualised sender-functional content that was nonzero: there is an act the receiver can

perform that brings the sender greater-than-baseline payoff.

These proposed solutions provide a tentative means for retaining and justifying the bi-

ological practice of explaining behaviour by reference to the content of mimicked signals.

But there is a deeper justification for attributing content in cases of divergent common inter-

est. A generalised form of communication theory encompasses costly signalling theory. Our

teleosemantic analysis of content in signalling systems generalises too. This claim is not in

tension with the work just described. It can instead be read as supporting aspects of their

accounts from a different direction. To begin, we will establish a core model from which

three different theories can be drawn out.

2Realistically, predator signals are somewhat inaccurate. The more accurate they become, the more selec-
tion moves receivers to more discerning perceptual abilities. This in turn prompts better mimicry, and the cycle
continues. More sophisticated signalling games would surely provide insight into these dynamics.
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6.4 A core model

Sign-reading behaviour trades off metabolic expenditure for error. Understanding the evo-

lutionary logic of sign-reading behaviour entails figuring out how to convert both error and

expenditure into fitness costs. Sign-reading is stable if there is a net benefit.

Signalling behaviour trades off two sets of metabolic costs (one each for sender and

receiver) for two sets of error costs (likewise). Understanding the evolutionary logic of sig-

nalling behaviour entails figuring out how to convert both error and expenditure into fitness

costs. Signalling is stable if both parties achieve net benefit compared to what would result

from non-signalling strategies.

Error can be interpreted in terms of proper function, and proper function entails a history

of selection. Typically, errors motivate a change in behaviour.3 Selection processes that

sustain signalling behaviour are sensitive to error. For evolutionary agents the selection

process is natural selection. For learning agents it is trial-and-improvement, or whatever

learning procedure they employ. For cultural agents it might be imitation. For engineered

systems it is whatever the engineer considers a fault, including not performing up to the

specification. In each case, errors destabilise current behaviour by inducing selective forces

that serve as a corrective for error-prone strategies.

Our core model includes two agents with payoffs determining behaviour. They are

causally connected by an intermediary signal, but they need not cooperate (figure 6.3). Se-

lection pressure on each derives from two sets of costs. Metabolic expenditure is paid by

3An error may not in fact trigger a change in behaviour: it may be too minor for the system to ‘notice’.
But errors must at least contribute to outcomes that selection could in principle be sensitive to; otherwise, there
is no clear sense in which they are errors. Also, I am not claiming that errors are a necessary condition on
behavioural change due to selection, though they might be.
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Figure 6.3: The core model, a generalised version of the basic sender-receiver model. The
sender observes a proximate state and sends a signal. The receiver observes the signal and
performs an act. The act, together with a distal state, determines payoffs for sender and
receiver. Because the payoffs of sender and receiver are different, there is no guarantee
of cooperation. Single arrows denote causal relationships. Double arrows denote selection
processes.

an agent when they send or receive a signal, observe a state, or perform an act. Error costs

are derived from the familiar payoff matrices. In a sense, an error matrix – more properly

a distortion matrix – is an ‘inverted’ payoff matrix. Just as payoff matrices determine the

benefit due an agent given a combination of state and act, distortion matrices determine the

penalty for each state-act pair (see section 6.4.2 below for more).

Figures 6.3-6.6 depict the core model and three versions of it, corresponding to our three

target theories. In the core model (figure 6.3), a distal state together with the receiver’s act

determines payoffs. The sender can observe a proximate state (which may be identical with

the distal state). The signal completes a causal loop between the distal state and the payoffs.

The greater the correlation between signal and distal state, the greater control the receiver

has over the payoffs. Double arrows denote selection processes of any kind (evolutionary,

ontogenetic, cultural, rational, etc.).

In sender-receiver teleosemantics (figure 6.4), sender and receiver are selected to coop-

erate. The distal state is the descriptive correctness condition of the signal. The proximate



241 6.4. A core model

Figure 6.4: Sender-receiver teleosemantics. Sender and receiver cooperate fully, meaning
there is just one set of payoffs (represented by a single variable). This is also represented by
a dashed line between the double arrows, which are selection processes acting on sender and
receiver. Selection acts on both sender and receiver equally. The proximate state is greyed
out because sender-receiver teleosemantics emphasises the distal state instead.

state need not be causally related to the distal state, though for non-accidental proper func-

tioning they must at least be correlated. Contrast informational teleosemantics (Neander,

2017), according to which the proximate state is the signal’s content. Again, double arrows

stand for any selection process that induces proper functions.

In costly signalling theory (figure 6.5), sender and receiver payoffs differ, so they are

not necessarily selected to cooperate. The proximate (behaviour-causing) and distal (payoff-

relevant) states are usually both features of the sender itself. For example, the payoff-relevant

state may be quality or willingness to fight. Metabolic expenditure ensures a correlation is

maintained between this feature and the signal, making the signal reliable (see below for

more). Double arrows denote natural selection or rational choice.

Finally, in rate-distortion theory (figure 6.6), the payoff-relevant state is identical to

the proximate state. The receiver’s act is an attempt to reconstruct the proximate state, with

payoff increasing as it reconstructs the state more accurately.4 Double arrows denote an en-

4In fact, this sentence and the last are only true in traditional applications. Rate-distortion theory applies to
more interesting situations too. First, the CEO problem (Berger et al., 1996) (El Gamal and Kim, 2011, §12.4)
is the problem of reconstructing a source given several noisy observations of it. This roughly fits the schematic
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Figure 6.5: Costly signalling theory. Both the proximate state that prompts sender be-
haviour, and the distal state that contributes to payoffs, are usually considered to be physical
properties of the sender (depicted by dashed lines connecting all three variables). Payoffs
can diverge, leading to deceptive signalling.

Figure 6.6: Rate-distortion theory. The proximate state is a string of symbols, and the distal
state is (usually) identical to it. The receiver’s act is an attempted reconstruction of this string,
and payoff is determined by a measure of its accuracy.

gineer’s rational choice about how sender and receiver should encode and decode the signal.

Let us now explore costly signalling theory and rate-distortion theory, and their relation

to teleosemantics. All three theories employ versions of the core model, each for a different

purpose. Costly signalling theory explains signalling behaviour in the face of conflicting

interests. Rate-distortion theory describes optimal transmission rates for perfectly coopera-

tive systems with nonzero tolerable error. Teleosemantics defines correctness conditions for

signals.

in figure 6.6, but with several nodes in place of the proximate state and arrows pointing into them from the
distal state instead of the other way round. Second, as will become crucial below, the distortion function itself
can measure the correctness of any functional behaviour with an appropriate payoff distribution. Thanks to
Manolo Martínez for these details.
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6.4.1 Costly signalling theory

A scenario familiar to biologists is that of signalling under the threat of deception (Maynard

Smith and Harper, 2003, §2), (Searcy and Nowicki, 2005, §4) (Bruce et al., 2017; Bruner et

al., 2017). Behavioural ecologists typically describe the problem of animal signalling as the

problem of explaining why signals remain honest. The same is true in other kingdoms too.

Bacterial colonies often comprise groups with divergent interests. Signalling helps bacteria

coordinate behaviour such as resource sharing. When members of signalling partnerships

have diverse evolutionary interests, cooperative communication is under threat of dishonesty

(Bruce et al., 2017). Dishonesty would lead to system breakdown. Nevertheless, in animals,

bacteria and elsewhere, signalling is rife in the biological world.

Costly signalling theory is a game-theoretic approach to explaining stability of signalling

systems despite incentives to deceive. In a sentence, it explains how metabolic expenditure

can keep signals honest. Consider a predator-prey interaction like that of Anolis lizards

and their snake predators (Leal, 1999). Snakes would be better off not engaging with strong

lizards because they might lose the fight (and their dinner). Lizards would be better off acting

so as to cause snakes to assess them as strong. This evolutionary logic leads to the lizard’s

pushup display, indicating endurance capacity and the ability to escape an attack. Such

displays have been shown to correlate positively with fight-relevant features, recommending

a costly signalling analysis (Leal, 1999) (see case study).
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Pursuit deterrence: the pushup displays of the Anolis cristatellus lizard

Male lizards of the species Anolis cristatellus have a lot to contend with. Not only

do they face predation from the snake Alsophis portoricensis, but they must compete

with male conspecifics for the attention of females. Fortunately, they have evolved

a signalling strategy that serves both functions. When faced with a predator or rival

male, the lizard bobs its head up and down repeatedly in what has been described

as a ‘pushup’ motion. These displays take a significant amount of effort to pull off.

Because that effort could be otherwise expended in resisting predation or fighting a

love rival, it has been suggested that the pushup is a costly signal. Leal (1999) tested

this hypothesis in the case of predation with favourable results. He showed that the

number of pushups performed in the presence of a model snake positively correlates

with the endurance capacity of the lizard. Together with the assumption that snakes

assess the endurance capacity of their prey, this suggests that the pushup display is

a costly signal. The metabolic resources required to produce the display increase

proportionally with the underlying feature of the sender the display is designed to

indicate.

Debate over costly signalling theory usually concerns such issues as how to assign costs,

how to measure them in real populations, alternative explanations and how-possibly scenar-

ios produced with the aid of models. Maynard Smith and Harper (2003) discuss various

ways in which signals can be kept honest, advising researchers not to assume metabolic

expenditure is always the correct mechanism. Searcy and Nowicki (2005) treat metabolic

expenditure (the “handicap mechanism”) as the most prominent mechanism by which sig-
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nals remain reliable, but consider alternatives too. Fraser (2012) disputes the taxonomies

of both Maynard Smith and Harper (2003) and Searcy and Nowicki (2005). Fraser offers a

new taxonomy of costs, arguing that separating imposed from intrinsic costs offers a more

fruitful analysis than that of Searcy and Nowicki (2005). Bruner et al. (2017) highlight the

difference between evolutionary cost and metabolic expenditure, demonstrating that in cer-

tain cases the link between these two is non-obvious, leading to consequences that differ

from traditional theoretical results. For this reason, I continue to refer to metabolic cost as

expenditure. ‘Metabolic cost’ will mean the ultimate fitness costs induced by metabolic ex-

penditure; ‘cost’ will be used when the distinction between expenditure and cost is irrelevant.

Instead of further elaborating costly signalling theory, I want to look at the very simple

explanatory approach that underlies Grafen’s seminal mathematical treatment. Appendix

D presents the mathematics; here I give an informal summary.5 Grafen (1990) described

a model in which senders are incentivised to exaggerate their quality, as occurs in sexual

signalling from males to females. Males make a decision how expensive a signal to send,

where all are in principle capable of sending any signal. Females observe the signal and

assess the quality of the male on the basis of it. Since low-type males are incentivised to

signal at greater intensity and enjoy the rewards of higher female assessment, there must be

some mechanism preventing this from happening.

Grafen showed that under certain conditions, if signalling is stable then signals are honest

and costly. Signal cost is the mechanism that maintains signal honesty. By assumption,

signalling is stable, which means receivers must be associating signals of a certain intensity

with males of a certain quality. It does not pay low-type males to send higher-intensity

5This summary corresponds to the major handicap result in appendix D.
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signals, because to do so they must expend more resources than a favourable assessment can

recoup. As a result, the way receivers associate signal intensity with male quality is a stable

strategy too. All males are signalling in a way that corresponds to their quality, so females

can take them at their word.

Importantly, this explanation is strategic. Signal expense incentivises senders to make

strategic decisions that are revealing – honest – to receivers. After Grafen, others such as

Bergstrom and Lachmann (1998) have shown that expenditure is not necessary to maintain

honesty. What is important, however, is that signal expense can play a role in explaining a

certain kind of stability.

When biologists use game theory models to explain behaviour, they often search for

mechanisms that maintain evolutionarily stable strategies (ESS). An ESS is a strategy

which, when adopted by the entire population, cannot be supplanted by a low-frequency

mutant due to selection alone. In this sense the strategy is stable: it will not be out-competed

by any alternative strategy. Grafen showed that strategic costs are one mechanism by which

signalling under divergence of interests remains stable.

Costly signalling can be compared to the core model (figure 6.3). Sender and receiver

do not have perfectly aligned interests, so selection is not joint selection. That is why there

is no dashed line between the double arrows in figure 6.5. The proximate state on which the

sender conditions their behaviour and the distal state that determines payoffs are typically

very closely related, or even identical, in the costly signalling model. The idea is usually

that sender quality (distal state) is determined by the sender’s genes, and sender behaviour

is under genetic control. In this case, both the proximate and distal states may be controlled

by a third variable, upstream of both, that represents genetic elements. Grafen’s strategic
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explanation captures the success of genes that ensure quality-appropriate signalling.

In sum, costly signalling theory provides explanatory tools for understanding stable com-

munication between agents with divergent interests. It takes the core model (figure 6.3), finds

instances of it in nature (typically, those that match figure 6.5), and offers an explanation for

why these systems remain stable over time. Metabolic expenditure is not a universal stabil-

ising mechanism, however. Some signalling systems are kept stable by other means. The

core model supports many explanations why and how a system remains stable. The costly

signalling model specialises in a single kind of answer to this question.

6.4.2 Rate-distortion theory and capacity-cost theory

Although many philosophers of biology will be familiar with costly signalling theory, few

philosophers of any stripe will be familiar with rate-distortion theory. That is a shame, be-

cause a lack of appreciation for the formal tools available within communication theory has

led to pessimism about its usefulness for naturalistic approaches to meaning.

Shannon’s fundamental results, about achievable transmission rates over noiseless and

noisy channels, hold in ideal cases. They assume that the goal is error-free message recon-

struction. Engineers quickly realised that perfect accuracy is not always sought. A signalling

system may tolerate some error in the reconstructed message. A more general theory of com-

munication therefore allows for signalling at a lower rate, incurring tolerable error.

Reflecting on this, Shannon and others developed a generalised form of communication

theory. Augmenting his earlier mathematical apparatus, Shannon (1959) introduced a mea-

sure of the cost of inaccuracy. When faced with a given communication problem, engineers

can choose an acceptable error cost and design coding methods that do not exceed that cost



Chapter 6. Sense and sense stability 248

Figure 6.7: A rate-distortion problem. A wheel is divided into five segments. The receiver
must choose the correct segment (shaded). They are penalised for choosing an incorrect
segment, but the penalty is lower for segments closer to the correct one. The example is
from Shannon (1959, p. 327).

on average. Furthermore, the goal of communication need not be reconstruction of a symbol

string. The formal apparatus of the theory requires only well-defined events and a probability

distribution over them. An example will make these points clear.

Suppose you want to transmit the position of a wheel. The wheel can be in one of five

positions, with each equiprobable. The receiver may choose the incorrect wheel position,

and both sender and receiver incur a cost. Suppose the two positions adjacent to the actual

state incur a small cost, while the other two incur a large cost (figure 6.7). The accuracy

of the wheel can be improved by expending more metabolic resources in the fight against

noise. Reducing noise entails increasing transmission rate. In general, we want to know

the minimum transmission rate (i.e. minimum metabolic resources expended) that incurs at

most a specified amount of error.

The resulting extension to communication theory is called rate-distortion theory. Dis-

tortion refers to the tolerable error, which sets a lower bound on transmission rate. If you

can afford to lose accuracy, you can save on transmission resources. The appropriate distor-
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tion function for a given task will be largely determined by context. Conversely, a maximum

available rate sets a lower bound on distortion. The lesson of the theory is that given a goal, a

channel, and a maximum average cost, a minimum rate exists that achieves the goal without

exceeding the cost.

Costs range from zero (all outputs correct) to a maximum determined by the receiver’s

best possible guessing strategy. In the wheel example, a blind receiver’s average distortion

is
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acceptable, the minimum transmission rate is zero: you do not need to transmit in order to

meet that level of performance. Maximum transmission rate, at which distortion is zero, is

log5 bits/signal: this is what is required to distinguish one out of five equiprobable states.

Blahut (1972) and Arimoto (1972) independently derived an optimisation algorithm that

delivers the appropriate minimum rate for every value of allowed average distortion. Alterna-

tively, given a maximum available rate, the algorithm delivers the minimum achievable cost.

Rate-distortion diagrams (figure 6.8) can be read in either of these two ways.

So far we have talked about how error changes with rate, but there is another significant

cost to bear: the cost of transmission. Metabolic resources are required to power transmis-

sion, no matter what medium is being used. In an engineering context these are typically

electronic messages, so resources include the energy and time required to send the signal,

the material used to build and maintain equipment by which transmissions are sent and re-

ceived, and wires across which the signal is sent. In general, expending metabolic resources

increases the rate of signalling.

Just as before, there are two ways to approach this trade-off. If you have a goal, a channel,

and a maximum average metabolic expenditure you can sustain, there is an optimisation algo-



Chapter 6. Sense and sense stability 250

Figure 6.8: A rate-distortion curve. The algorithm that produces the curve can be used to
solve either of two problems. (1) Given a maximum tolerable error cost, the algorithm finds
the minimum required rate. (2) Given a maximum available rate, the algorithm finds the
minimum achievable error.

rithm that tells you the maximum rate at which you can transmit. Alternatively, if you have

a minimum rate at which you must transmit, the algorithm tells you the minimum metabolic

expense you can hope to incur. The subdiscipline of communication theory that deals with

this trade-off is called capacity-cost theory.6 Jimbo and Kunisawa (1979) presented an algo-

rithm that is a counterpart to the one given by Blahut and Arimoto for rate-distortion theory.

de Polavieja (2002) applies a similar algorithm to a capacity-cost problem in a biological

context (see appendix E).

Historically rate-distortion theory and capacity-cost theory have been kept apart. The

first considers how to mitigate error by increasing transmission rate (or conversely, how

6The term ‘capacity’ is used here because the maximum achievable rate when there is no expenditure
constraint is the capacity of the channel.
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Figure 6.9: Together, metabolic expenditure and distortion requirements place upper and
lower bounds on transmission rate. If you want to minimise distortion, you are constrained
by expenditure; if you want to minimise expenditure you are constrained by distortion. Trans-
mission rate acts as an exchange rate.

to get away with lower transmission rate by accepting greater error). The second consid-

ers how to mitigate metabolic expenditure by decreasing transmission rate (or conversely,

how to get away with higher transmission rate by accepting greater metabolic expenditure).

Supposing these two approaches could be combined, the result would be a trade-off of two

different kinds of cost. On one hand, if you want to decrease error by increasing transmission

rate, you must expend metabolic resources to do so. On the other, if you want to decrease

metabolic expenditure by decreasing transmission rate, you must accept increased error. The

best signalling strategy would embody the optimal trade-off between error and metabolic

expenditure. Transmission acts as a kind of exchange rate in this calculation, describing how

much error you can offset by expending metabolic resources (figure 6.9). Then, depending

how error and expenditure compare, you can determine the optimal rate at which to transmit.

In some cases the two costs may be incommensurate. Indeed, that seems to be the reason

why the two approaches are kept distinct in engineering contexts. A maximum allowable

error is chosen and the transmission rate is adjusted to ensure the system stays below that

level of error. The question how to choose a maximum tolerable error (and the question
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how to measure the cost of error as a function of error) is answered differently depending on

context. Available metabolic resources act as an independent constraint.

In subsequent sections I explore the link between these aspects of communication the-

ory, their relationship to costly signalling theory, and how the resulting theoretical edifice

supports a teleosemantic approach to meaning. First, let us briefly recap those aspects of

teleosemantics relevant to the question at hand.

6.4.3 Sender-receiver teleosemantics

Teleosemantics is a theory of signal content. Signals are intermediaries between coadapted

senders and receivers, that guide the receiver in performing a jointly beneficial function

(Millikan, 1984, p.96ff) (Millikan, 2004b, §6) (section 1.2). In bringing mutual benefit to

sender and receiver, the receiver’s behaviour stabilises the signalling relationship. The signal

guides this task, hence contributes to the stable recurrence of this relationship in future.

Signal content enters the picture when we consider how the signal successfully guides

the receiver. Of a range of actions receivers could perform, conditioning their behaviour on

signals leads them to greater success. Signals improve receiver success because they bear

appropriate relations to relevant parts of the world.

Teleosemantics defines content in terms of mapping relations between signals and their

satisfaction conditions (figure 6.4). Focusing on descriptive relations, a signal’s correctness

condition is that state of affairs that must obtain in order for the receiver’s behaviour upon

receipt of the signal to be nonaccidentally successful (figure 1.4, page 18). In short, a signal

maps onto a state of affairs and this mapping helps the receiver perform its job successfully.
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Mapping relations explain how signalling behaviour persists through selection.7 The title

of this chapter loosely indicates these two features. That a signal maps onto the world –

that it has ‘sense’8 – explains receiver success. How that success contributes to the signal’s

own proliferation – to its stable future production – is the causal effect the signal has on the

receiver that helps bring about a mutually beneficial outcome.

Teleosemantics faces a problem dealing with realistic cases because it defines meaning

with respect to perfect common interest. It deals only with functions that are codesigned.

Senders and receivers perform their functions by cooperating. Their interests do not diverge.

However, many examples of biological signals operate between agents whose evolutionary

interests are not perfectly aligned. Even within individual organisms, signals may be sent

between components that do not cooperate. Different parts of a body have the same ultimate

interests but may disagree over the best way to satisfy them. Bodies are rowdy parliaments

of criss-crossing intentions. Teleosemantics presents an ideal that biology fails to live up to.

6.5 Unifying the theories

I want to argue that unifying costly signalling theory and rate-distortion theory supports

teleosemantics, so I must first show how they are unified.

There is a provocative similarity between dishonesty and noise. Speaking about dishon-

esty in costly signalling scenarios, Grafen says:

7That is, once they have originated and become established as part of a signalling system, mapping relations
help explain successful signalling behaviour. See section 5.3 for an argument that teleosemantics does not fall
foul of an objection on the basis of circular explanation.

8Not Fregean sense. Not ‘sense’ in any theoretically loaded way. Just a loose synonym for the mapping
relations defined by teleosemantics.
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Cheats impose a kind of tax on the meaning of the signal.
Grafen (1990, p. 535)

On the other hand, speaking about noise in cooperative scenarios, Shannon says:

Nature takes payment by requiring just that much uncertainty, so that we are not
actually getting any more than [the capacity] through [the channel] correctly.

Shannon (1948b, p. 410)

This is more than just an idle analogy. From the perspective of a cooperating sender-receiver

pair, dishonest senders are a kind of noise. Furthermore, the difference between environmen-

tal noise and dishonesty-as-noise mirrors the distinction between efficacy costs and strategic

costs. Let us explore these ideas in more detail.

6.5.1 Communication theory encompasses costly signalling

Intuitively, reduced common interest means reduced transmission rate. Effort expended in

signalling must be paid back by receiver behaviour, but reduced common interest means

receivers are less incentivised to perform behaviours rewarding for senders. Conversely,

conditioning behaviour on received signals only pays when the signal corresponds to some

outcome-relevant world affair. But reduced common interest means senders are less incen-

tivised to produce signals that correspond to world affairs according to shared mapping rules.

As common interest decreases, so too does the incentive to signal. Relating this point to

our earlier idea that common interest is a kind of exchange rate between sender and receiver

costs, the more interests diverge the more prohibitive the exchange rate becomes.

We already know that communication-theoretic codes are a special case of game-theoretic

strategies (section 3.2). de Polavieja (2002) and Martínez (2019) assert an even tighter link.

Martínez shows how to interpret costly signalling as a rate-distortion problem. The idea is
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roughly as follows. Distortion was conceived as a measure of how detrimental it is to re-

construct a symbol incorrectly. As a measure of the severity of error, it penalises the entire

system. In the central model there is no sense in which a given error might be good for the

sender and simultaneously bad for the receiver. Engineered communication systems have

unified interests by design: error for one is error for all. Not only is there no deception in

such systems, there is no sense in which there could be deception.

These two aspects of the distortion measure – that it measures pairs of symbols and is

shared by sender and receiver – can be generalised. I have already explored extensions of

communication theory beyond the symbolic paradigm. Distortion need not be a measure

over symbols but can be a measure over outcomes more generally. And instead of d for

the system we can define dS for senders and dR for receivers. Distortion need not be a

system-level measure but can apply to individual agents. In this form, distortion starts to

look a lot like payoff matrices from game theory models. Payoff matrices define how good

are different acts in different situations, distortion matrices say how bad they are. Indeed,

Martínez (2019, p. 5) shows how to convert payoff matrices into distortion matrices and vice

versa (see appendix B). In this way, game-theoretic models of costly signalling interactions

are recast as communication-theoretic models of rate-distortion trade-offs.

6.5.2 Dishonesty as noise

Here is how we can interpret this situation. For the sender, the receiver is a constraint. For

the receiver, the sender is a constraint. From the point of view of the signal, imperfect

common interest of sender and receiver is a constraint. Martínez (2019, p. 1) makes a similar

point, using the phrase “channel-first perspective” to denote the signalling system as a jointly
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constructed entity with its own evolutionary interests.

In section 6.4 we saw that engineering applications of rate-distortion theory and capacity-

cost theory are usually kept apart. In the biological case, on the other hand, the costs of

communication error and metabolic expenditure can be made commensurate by considering

their impact on fitness cost. Indeed, costly signalling theory is predicated on a trade-off

between error and expenditure. In Grafen’s model, error for a sender just means failing to

attract a receiver (while error for a receiver means accepting low-type senders, foregoing the

chance to mate with high types). Senders pay costs to attract receivers more reliably – that

is, to reduce the probability of the ‘error’ of failing to mate.

de Polavieja (2002) suggests we can interpret dishonest senders as noise impacting the

cooperative system between honest senders and receivers. In cooperative systems, transmis-

sion rate is increased (and metabolic costs paid) in order to combat noise. The introduction

of dishonest senders (increasing noise) incentivises the honest senders to boost their signals

(increasing metabolic expenditure) and make receivers reliably respond (decrease error). Al-

though the central aim of costly signalling theory is to describe conditions on stability, it

achieves this by imagining optimal prudential decisions made by signallers. This explana-

tory tactic highlights the link with communication theory.

de Polavieja’s perspective highlights two kinds of metabolic expenditure, corresponding

to the two types of signal design identified by Guilford and Dawkins:

[T]he first, strategic, component of signal design is what determines whether or
why (in fitness terms) the signal receiver responds appropriately, whereas the
second, efficacy, component affects the probability that the signal, once given,
will reach its target destination and elicit a response at all.

Guilford and Dawkins (1991, p. 2)
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Strategic costs are paid to overcome receiver reticence, while efficacy costs are paid to over-

come environmental noise (see sections 1.4 and 7.2). The term ‘metabolic expenditure’ con-

flates both kinds of cost to encourage the idea that from the sender’s perspective receiver

reticence just is a kind of noise. It is a state of affairs external to the sender that hinders the

signal’s proper function. In the same way that the signal/cue distinction collapses when what

is being explained is receiver behaviour (section 1.3), the signal/influence distinction col-

lapses (and with it the strategic/efficacy distinction) when what is being explained is sender

behaviour.

One way of interpreting the costly signalling trade-off is to say since error destabilises

the system, paying to increase the rate helps stabilise it. Prevalent dishonesty threatens to

overwhelm receivers until they no longer respond. The system evolves to a point at which

signals are no longer heeded, and soon they are no longer sent. This is what it means for

error to destabilise the system. The rate-distortion perspective highlights that error and

noise both destabilise signalling systems. Even when cooperating, senders must expend

metabolic resources to allow receivers to hear their signals over the noise. In other words,

even when strategic costs are not necessary to ensure stable honesty (as in the case discussed

by Bergstrom and Lachmann (1998)), efficacy costs are required to ensure signals are suffi-

ciently noise-free to be worth responding to.

From a receiver’s perspective, when we shift between game theory and communication

theory, we can treat dishonest signallers as a source of noise. Either way, what we have is a

force running counter to the well-functioning of the system.
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6.6 A stability principle

Error has two sources: dishonesty and noise. In both behavioural ecology and commu-

nication theory, error destabilises signalling systems. In both cases, increasing metabolic

expenditure helps overcome error, hence contributes to system stability. This concept is a

general idea that applies in engineered and biological systems. An engineered system is ‘un-

stable’ to the extent that it does not yet satisfy an engineer’s error criterion. The engineer

will then induce metabolic expense – changing the system – until it satisfies their intent. At

this point they no longer change the system and it is stable. The role of selection is played

by the engineer’s hand. This link between error and system stability is a good candidate for

a fundamental principle of communication. Call it the stability principle:

Stability principle: a signal is erroneous to the extent that it contributes to out-
comes that would destabilise the communication system of which it is a part.

Certainly there are problems with this proposal as stated. For example, consider the ESS pair

in the deception game, depicted in figure 6.2. Treating the game as a representation of the

firefly case, one might reasonably argue that predators do not strictly destabilise the system

by sending the mimicked flash signal. Predators are sufficiently rare (or send the signal

sufficiently rarely), relative to payoffs, that their false signals do not perturb the system

from its stable state. That is what it means for this pair of strategies to be evolutionarily

stable, after all. Although each system has a certain level of fault tolerance, fault can still

be characterised as a destabilising force. I am not concerned with formalising the stability

principle.9 I am more interested in exploring how an idea reasonably similar to it would

9Martínez (2015), responding to Godfrey-Smith’s suggestion that deception could be defined in terms of
“non-maintaining signals” (Godfrey-Smith, 2011, p. 1295), gives reason to think precisifying the principle ade-
quately will be rather difficult: there are “games in which deceptive signals can be arbitrarily frequent, without
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accord with teleosemantics. To move forward, I must set aside worries about the specific

form of the claim.

6.6.1 Teleosemantics treats the stability principle as definitional of

correctness conditions

The stability principle refers to signals being erroneous. This implies there is an antecedently

defined mapping between signals and world affairs. And indeed in both formal theories this

is so. In rate-distortion theory, as elsewhere in communications engineering, signal meaning

is determined by the code (see sections 3.2 and 5.5). Codes are defined by the engineer

who chooses sender and receiver strategies simultaneously. Costly signalling takes place

in a game theory setting, in which signal meaning is determined by the joint behaviour of

sender and receiver. These behaviours are selected by coevolution of successful strategies.

Signallers come to agree on the meaning of a signal, and this agreement ensures system

stability. In both cases, correctness conditions are stipulated, and a link with stability is then

discovered.

Teleosemantics suggests a small but significant shift in perspective. Sometimes in math-

ematics we can interpret a theorem as a definition of one of the terms within it (Soare, 1996,

§3.4). For example, suppose you have an intuitive concept of the shape that the word ‘rectan-

gle’ refers to. The concept does not come with necessary and sufficient conditions attached,

but it does distinguish paradigmatic rectangles from marginal cases, and can help identify

non-rectangles. Suppose you offer the following theorem:

this undermining information transfer between sender and receiver” (Martínez, 2015, p. 215). Intuitively we
would expect all deceptive signals to count as erroneous, so in formalising the stability principle we may be
forced to either give up the intuition or refine the principle further.
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Theorem: a quadrilateral is a rectangle if and only if it is a parallelogram with
diagonals of equal length.

In seeking to prove the theorem, you might check paradigmatic rectangles for the properties

the theorem claims they necessarily have. But while interrogating your concept RECTANGLE,

you might find that it is either too broad, too narrow, too vague or informal, or unsatisfac-

tory in some other way. You might therefore decide to sharpen your concept by defining

rectangles this way:

Definition: a quadrilateral is a rectangle if and only if it is a parallelogram with
diagonals of equal length.

By making this move, you sharpen the intuitive concept of rectangle. Some aspects of the

intuitive concept might be lost, but the benefits of rigorous definition are obvious. This is

conceptual engineering, and it drives much mathematical progress.10

Consider now the case at hand. Intuitive notions of truth and falsity are acceptable for

rate-distortion and costly signalling theories because workers in the respective fields agree

how to apply those concepts in their explanations. The stability principle operationalises a

notion of error and draws a link between error and stability:

Principle: a signal is erroneous to the extent that it contributes to outcomes that
would destabilise the communication system of which it is a part.

Faced with this principle, a philosopher might mistakenly believe that formal theorists have

a robust definition of correctness and error in hand. I suggest instead that we do not need

10See for example Woodward on the concept of continuity, or Tao on the concept of measure (Woodward,
2003, p. 8) (Tao, 2013, §1.1). Note that these are mathematical concepts. Conceptual engineering in math-
ematics is geared towards mathematical goals, rather than those of philosophers or the folk. Nonetheless,
philosophers can learn from this method. The concept of causal specificity might be a good case (Griffiths
et al., 2015) (see footnote 19, page 46).
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an antecedent definition of correctness and error to make sense of the principle. We can and

should interpret the stability principle as a definition:

Definition: a signal is erroneous to the extent that it contributes to outcomes
that would destabilise the communication system of which it is a part.

And the definition of correctness conditions follows.

On the rate-distortion perspective, one source of error is noise. It seems rather bizarre to

talk of noise being ‘true’ or ‘false’. Even when talking of signals that would be correct but

for noisy interference, we would tend to assert that they are ‘distorted’ rather than false. It

is more natural to say that falsity is distortion at the point of origin. A signal is false when,

at the time the sender produces it, it already fails to map. This never happens in standard

models of communication theory. But it happens a lot in costly signalling theory.

Defining correctness conditions in terms of system stability is broadly equivalent to as-

serting sender-receiver teleosemantics (Millikan, 2004b, §6), (Artiga, 2016b). Recall how

teleosemantics defines a signal’s (descriptive) correctness condition: the state of affairs that

must obtain in order for the receiver’s behaviour upon receipt of the signal to be nonacci-

dentally successful. The signal’s truth condition is the state of affairs that accounts for the

receiver’s behaviour being successful. Signals mapping correctly onto their truth conditions

selects for responsive receivers, which in turn selects for compatible senders. Mapping onto

truth conditions is a matter of degree.

A few comments on the relationship between teleosemantics and the other two theories

are in order. First, at least one teleosemanticist has recognised the two fundamental costs

described here. Speaking of signals in evolutionary systems, Millikan (2004b, pp. 71–2)

says, “They need only to succeed often enough to offset their own production costs (energy
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and resources used) plus any negative effects resulting directly from failures.” Here “failure”

means failing to produce causal effects that contribute to evolutionary success of the system.

“Negative effects resulting directly from failures” means, more or less, error costs. Second,

teleosemantics describes the core model of communication theory. This point has been es-

tablished elsewhere (chapter 3), (Artiga, 2016b, p. 495) (Martínez, 2019, p. 1) so I will not

dwell on it.

6.6.2 Error and proper function

Above I said that the term ‘erroneous’ seems to indicate a preexisting attribution of content

to signals. But at its most basic, an error measure is simply a measure of the cost of inoppor-

tune behaviour. In game theory models, the error measure is simply a difference in payoffs.

In biological contexts it is the fitness cost. The correctness of signals derives from the cor-

rectness of behaviour. The latter is formally enshrined in mathematical theory, though open

questions remain concerning application and interpretation.

Pursuing this line further, if distortion is employed as a measure of error, but error is de-

termined by proper function performance, then distortion is in general a measure of proper

function performance. This fits well with Martínez’s point that a distortion matrix is just an

inverted payoff matrix (Martínez, 2019, §3). Distortion matrices represent (mathematical)

functions from an ordered pair of input alphabet and output alphabet to the real numbers,

whereas payoff matrices represent (mathematical) functions from an ordered pair of states

and acts to the real numbers. It is clear by now that alphabets generalise to states and acts

(section 3.2). It should also be clear that a payoff matrix defines a measure of proper func-

tioning: if you do well, you get rewarded, and it is those rewards that determine functional
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behaviour.

6.6.3 Functional content formalises the stability principle

Functional content is one way to formalise the stability principle. It assigns values to vector

components when the corresponding state helps contribute to continued sending of that sig-

nal in that state. For example, in the bottleneck game (model 6.1) there is a sense in which

signal s1 induces a ‘faulty’ action when sent in w2: it prompts act a1 when a2 would have

been better. In restricted scenarios like this, senders cannot help but send ‘false’ signals

some of the time. But in situations where interests diverge, false signals may become more

prevalent. Then they harm the well-functioning of the entire system, and threaten to reduce

transmission rate to zero.

Shea et al. (2017) do not mention destabilising uses of signals, and they do not define

functional content for signals sent out of equilibrium. Nonetheless, because functional con-

tent picks out those states with which a signal must coincide in order to contribute to stability

of the system, it also picks out states in which that signal would destabilise the system. Con-

tinuing the bottleneck example, each time s1 is sent in w2 it reduces the receiver’s incentive

to pay attention to the signal. When responding to this signal in this state, it would do just

as well acting without paying attention to the signal. It may be objected that although such

uses of a signal are non-stabilising, that does not entail they are de-stabilising. However, in

very many real-life cases, there will be some metabolic cost to responding to a signal over

ignoring it. When signalling does not pay, selection will often favour devices that economise

by refusing to signal or respond.

Furthermore, metabolic costs can play a role in shaping functional content. For example,
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Shea et al’s figure 2 (p.12) depicts a situation in which the functional content of a signal

depends on the relative frequency with which subsequent acts are performed. These propor-

tions will be shaped by both kinds of cost: if one is more metabolically costly or provides

less net benefit, it will be performed less often or not at all.

Finally, recall that different vectors can be associated with the same signal, capturing

the difference between states that stabilise sender behaviour and those that stabilise receiver

behaviour. More work needs to be done to add to this formal repertoire.11

There may be other ways to formalise the stability principle. In particular, different for-

mulations may be required for evolutionary models driven by dynamics other than the repli-

cator equation. On the evidence so far, prospects are good for formalising teleosemantics in

a manner that attributes content in conflictual scenarios. I now turn to an objection.

6.7 An objection

Objection. Defining error in terms of system instability puts the cart before the horse. A

definition of error is required in order to explain failure, hence instability. Receivers some-

times fail because signals do not map onto the states they ought to. Error cannot be defined

in terms of failure on pain of circularity.

To further press the objection, consider a distinction between two kinds of reason for

receiver failure. On one hand, a receiver might fail to perform its function because the

signal maps incorrectly. For example, a disoriented bee might dance inaccurately. On the

other hand, a receiver might fail to perform its function despite the signal mapping correctly.

11I note that Millikan has indicated acceptance of the idea that signal content is sometimes ambiguous in
this way; see the conversation between Millikan and Sterelny at Millikan (2018b, 1h07m50s-1h11m20s).
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For example, a worker bee flying towards a patch of flowers indicated to it by a scout’s

waggle dance might be preyed upon by a bird. Such features are not typically represented

in signalling games, but in real life there are many obstacles to achieving a goal. In order

to distinguish these kinds of cases, there needs to be a mapping between signal and world

that can be evaluated independently of the receiver’s subsequent performance. The proposed

definition fails to provide it.

Response. My response is rather flat-footed. Before there is a convention, there really is

no difference between signal failure and failure for other reasons.

Consider a situation where sender and receiver have common interests but happen to

be at a stage in their evolution where they perform incompatible strategies. In such a case,

should we say that the sender is sending wrong or the receiver is receiving wrong? I submit

that neither can consistently be asserted. There is as yet no convention, so no mapping to

speak of. Signals in this system do not yet have determinate content. Only given an agreed

signalling strategy can signals go wrong in respect of it.

Take for example the very first 2x2 game in Signals (Skyrms, 2010, p.10ff.) (model B.1

in appendix B). At the start, the population is 50/50. At the end, one strategy wins out.

Perhaps with hindsight we could say ‘this half of the population were wrong, and that is why

they died out’. But you could not say that ahead of time.

Perhaps we can relate this to Birch’s suggested refinement of Skyrms’s account of propo-

sitional content (Birch, 2014b). On Birch’s account, the content of a signal is what it would

be at the nearest separating equilibrium. In the above example, signals that are exactly

equidistant between two equilibria have no content. Perhaps transmission rate could be

used as a measure of how far a system is from equilibrium. The transmission rate in the
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initial state of Skyrms’s model is zero (because H(X) = H(X |Y ) = 1), and this is the furthest

possible point from equilibrium. This is a good reason to treat signals as contentless at that

point.

Bringing this back to the natural case, before there has been selection for the waggle

dance, there really is no difference between failing to find food and being eaten by a bird.

Selection over millions of years smooths out all those unusual circumstances, so the right

Normal explanation picks out the descriptive content of the signal: the state of affairs com-

mon to all those occasions; that is, the presence of food in a location spatiotemporally related

to the form of the dance.

Rejoinder. My interlocutor may reject as too radical the idea that signals continuously

change their meanings as senders and receivers change strategies. Such a view renders mean-

ing too cheap and ephemeral, and threatens our understanding of semantic content as (say) a

determinate mathematical function from possible worlds to extensions.

Response to rejoinder. But such a view is at odds with what we know of linguistic

meaning, let alone less paradigmatic kinds of content. Words really are continuously chang-

ing their meanings, as speakers and hearers update their conversational strategies for a wide

range of reasons. The same is even true for signal form, whether linguistic or biological,

regardless of their meaning. The point to bear in mind is that the meaning of a signal in

a well-functioning communication system remains stable enough to support non-accidental

joint function. That’s how it is with human language, and if linguistic meaning is the paradig-

matic example of semantic content, we ought not be concerned that other bearers of meaning

display similar changeability.
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6.8 Conclusion

A unified picture of the fundamental nature of communication is emerging. Sense and sta-

bility go hand in hand. Appealing to stable strategies to explain or ground standards of

correctness has been hinted at in recent naturalist philosophy (Birch, 2014b) (Sterelny and

Fraser, 2017) (Dennett, 2017, §3). These moves would benefit from recognising the re-

lationship between stability and proper function. Formalising teleosemantics in terms of

functional content (or similar) renders it readily applicable to cases of imperfect common

interest. Prospects are good.



Chapter 7

Evolutionary communication theory

7.1 Introduction

Biologists explain signalling behaviour by appealing to core tenets of evolutionary commu-

nication theory. In this chapter I outline in as much detail as possible what I take that theory

to be.

Evolutionary communication theory is an explanatory paradigm. It assumes that the

goal of communication is coordinated function, and that transmission is hindered by noise,

divergent interests, and physiological constraints. All of these considerations are part of

an extension to the original theory of communication. Biologists draw on this paradigm

without employing a univocal name for it. That is the job for which I have designed the label

‘evolutionary communication theory’.

In section 7.2 I motivate the account by outlining important features of biological signals

not explicitly captured by classical communication theory. Then, in section 7.3 I characterise

evolutionary communication theory as an explanatory paradigm that appeals to coordinated

function, divergent interests and physiological constraints. The next few sections survey ex-

isting work that implicitly (section 7.4) or explicitly (section 7.5) uses explanatory concepts

from communication theory. Finally, I respond to objections (section 7.6).

268
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7.2 Background and motivation: the information

debate in behavioural ecology

Parts of this section are taken from Mann (2018).

In section 2.2 we saw how to interpret informational measurements in a paradigmatically

cooperative signalling system. Several reasons counted in favour of using the honeybee

waggle dance as a case study. Through decades of research there is plenty of data available

on bee dances and their effect on compatriot bees. Strong eusociality entails a negligible

threat of free riding or defection. It is reasonable to assume signalling is fully cooperative,

avoiding complex problems of cross-purpose and deception. But the question must be faced:

what becomes of this methodology when few or none of these assumptions hold?

Although we dealt with some objections to the use of informational concepts in be-

havioural ecology in section 2.4, there remain disanalogies between communication theory

and animal signalling. This section motivates evolutionary communication theory by con-

sidering challenges from Dawkins and Krebs (1978) and several joint and individual papers

from Owren, Rendall and Ryan (hereafter ORR) (Owren et al., 2010; Rendall and Owren,

2013; Rendall et al., 2009; Ryan, 2013).

7.2.1 Three problems with the informational approach: content,

constraint, and coadaptation

As a consequence of the abstraction required for informational description, questions of be-

havioural and developmental constraints have often been ignored. Animals do not have great

freedom of action, and natural selection does not have free rein in shaping their behaviour.
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Many purported instances of signalling can be shown to be distinctly manipulative (Rendall

et al., 2009, p. 237) (Owren et al., 2010, pp. 766–7). Consider two populations of senders and

receivers without perfectly aligned interests, such as males and females of a single species.

Suppose, as a general rule, overt behaviour can adapt faster than the cognitive architecture

underlying perception. Then receivers will often lag behind in the perceptual arms race.

Senders will be quick, on an evolutionary scale, to exploit perceptual biases while receivers

will be slow to rectify them. Receiver responses are then determined by trade-offs between

the need to respond to relevant perceptual stimuli without being duped too harshly.1

This story of trade-offs goes beyond signals that are ‘about’ something, such as male

quality, and includes behaviours that cannot be evaluated in terms of honesty. ORR point out

that many examples of what we typically think of as signals are not (or only degenerately)

contentful, because their function is tied specifically to receiver affect or attention. For ex-

ample, males of some fish species display coloration similar to that of their female receivers’

prey, the point being to catch a female’s attention (Owren et al., 2010, p. 767). Importantly,

being better at attention-grabbing need not correlate with quality. The reason for this male

adaptation is not a corresponding female adaptation; it is a prior female adaptation for an

entirely different function. The following case study is an example.

1There are at least three reasons to doubt the universality of this scenario. First, Bergstrom and Lachmann
(2003) describe conditions under which the slower-evolving organism enjoys the benefit, a phenomenon they
call the Red King effect. Second, Brusse and Bruner (2017) argue that in cooperative cases it benefits both
sender and receiver that senders evolve faster than receivers. Third, once we consider associative learning on
individual timescales, the balance of power in the arms race shifts: receivers learn quickly to distrust false
signals, but senders are slow to develop new production mechanisms.
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Surfperch sensory drive

Surfperch are fish of the family Embiotocidae. They live among kelp forests off the

coast of California, where dappled light produces a high variance in underwater mi-

crohabitats. Related species of surfperch have diverged evolutionarily, in part due to

the different visual properties of the environments they inhabit. Different species vary

with respect to which of two properties of visible light they are optimised to detect:

chromaticity and luminance.

The chromatic component of a light source is its colour. It is detected via inhibitory

connections in visual processing, downstream of retinal photoreceptors. In contrast,

luminance is the brightness of a light source. It is detected via excitatory connections

in visual processing. Because these two properties are detected by contradictory pro-

cesses, there is an evolutionary trade-off in sensory systems designed to detect them

both. In particular, since surfperch are dichromats (they have only two types of retinal

cone), improvement in chromatic detection almost inevitably entails degradation of

luminance detection and vice versa (Cummings, 2007, p. 531).

One would expect surfperch sensory systems to respond to this trade-off by favouring

whichever of the two features was most ecologically relevant. Whether chromatic-

ity or luminance is most important depends in large part on the visual properties of

the background environment. In environments with highly variable luminosity, chro-

matic detection is favoured. It would be reasonable for fish in such environments

to have sensory systems adapted to detect colours rather than luminance. Indeed,

that is what Cummings (2007) reports. She first infers a common ancestor of five
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surfperch species, showing that this ancestor would have a sensory system balanced

between chromatic and luminosity sensitivity. Of five extant species studied, two

displayed a shift towards a chromatic-favouring sensory system (Hypsurus caryi and

Micrometrus aurora). These two species occupy habitats with higher luminance vari-

ability (Cummings, 2007, p. 540). In contrast, the three species in more stable habi-

tats displayed a shift towards favouring luminance detection (Embiotoca jacksoni, E.

lateralis, Damalichthys vacca). Cummings rules out the possibility that relatedness

between species explains this variation.

Furthermore, male surfperch develop colouration designed to get the attention of fe-

males. Different species display different colours, and these features correspond to the

visual sensitivities of females. The best explanation for these correlated features is that

sensory systems adapted to the aforementioned trade-off, then signalling colouration

followed suit (Cummings, 2007, p. 542).

According to Cummings’ hypothesis, male surfperch colouration is an example of efficacy

design rather than strategic design (Guilford and Dawkins, 1991). Efficacy design comprises

features of signals that improve their detection, whereas strategic design refers to features of

signals that affect the receiver’s assessment of the sender. Sensory-driven colouration gets

the attention of females, but it need not indicate anything about the underlying quality of

males.

It can be difficult to differentiate these two kinds of design in part because different

hypotheses sometimes entail the same predictions. For example, on the present hypothesis,

“female preferences for orange or red coloration [entails efficacy design due to a] visual
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foraging bias for carotenoid-rich food” (Cummings, 2007, p. 543), but on an alternative

hypothesis “this preference is also predicted by indirect or direct benefit models if these

colors serve as indicators of male carotenoid-foraging ability or condition [entailing strategic

design]” (Cummings, 2007, p. 543). In short, it might be the case that male colouration

evolved in part due to what it indicates about male quality. But, crucially, it might not. What

is important is that efficacy considerations may be sufficient to explain signal design.2

ORR want to draw on cases like the surfperch to argue that information is a bad concept

to employ in animal signalling. There are three lines of argument they can draw on. First,

traits and behaviours designed as attention-grabbing appear not to be contentful. Where

male colouration does not indicate male quality, there is nothing that the signal is ‘about’,

hence it ought not be described as carrying information. Second, physiological constraints

play a larger role in shaping the form of the signal than is usually afforded by information

optimists. Idealised models taken from game- and communication theory assume that sig-

nallers can employ any strategy. The trade-offs that shaped female surfperch sensory systems

demonstrate that receiver strategies are much more constrained than those models assume.

Third, male coloration is not a consequence of coadaptation. It is an adaptation that exploits

pre-existing sensory processes in females. Call these the problems of content, constraint and

coadaptation. I will take them one by one.

Consider first the problem of contentless signals. In the example, fish coloration is not

contentful, because it does not correlate with anything. ORR argue that in situations like

these, “courtship signals do not evolve to carry information about signaler quality” (Owren

2Presumably there is a ‘baseline’ level of efficacy design for primarily strategic signals: a signal must be
at least detectable in order to cause a receiver’s response.
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et al., 2010, p. 767). However, this does not count against a communication-theoretic per-

spective on animal signals. Consider what we concluded from the surfperch study. Paying

careful attention to the distinction between efficacy and strategic design, Cummings pointed

out that male surfperch colouration might not be a case of strategic design – that is, they

might not have evolved to indicate male quality. But their efficacy features are just as much

part of a communication-theoretic approach as their strategic features. Indeed, ORR em-

phasise that courtship displays often show features designed to allow them to overcome

background noise (Owren et al., 2010, p. 766). But this is precisely the problem that channel

coding, in its evolutionary guise as efficacy design, solves.

Furthermore, emphasising the distinction between efficacy and strategic design does not

entail that the latter is never responsible for signal evolution. ORR’s claims are consistent

with the existence of signals that evolved to indicate features of the sender or the wider world.

Indeed, a given signal may have evolved for reasons to do with efficacy and strategic design,

each ingredient being important to varying degrees. It does not follow from the fact that there

are signals whose design is not strategic that there are no signals whose design is strategic.

It is the latter kind of signal that is paradigmatically contentful.

Finally, the objection from contentless signals contains a hidden assumption: that in

order to be contentful, signals must indicate a state of the world. To the contrary, signals

can also contain instructions how to act. This could include an instruction to pay attention!,

opening the channel for further signalling. (Instructive signals may also be construed as

having a rather degenerate descriptive aspect, such as something here!.) Of course, whether

or not a descriptive aspect is attributed, the instructive aspect still requires coadaptation. By

assumption the fish in the example do not meet this condition. I deal with this wider problem
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below, but the point to take away here is that instructive signals need not have the familiar

indicative content usually assumed by paradigms like costly signalling theory.

ORR’s second line of attack against the informational approach concerns physiological

constraints. The informational approach seems to assume that all conceivable variants of

a given signalling behaviour are available for evolution to select among. Then the expla-

nation for (say) a given receiver response is its adaptive benefit. But signalling behaviours

whose form is primarily attributable to physiological and developmental constraints are not

apt for this kind of explanation. In the case of surfperch, females respond to male coloura-

tion not because of an evolutionary benefit it brings, but because their visual processes are

constrained in their accuracy. In this case, constraints are imposed by a trade-off between

chromatic and luminance sensitivity. Different kinds of sensory systems will face different

kinds of trade-offs, and are subject to constraints as a result. Canonical signalling explana-

tions draw on receiver function to explain signal form. Developmental constraints crowd out

this explanation.

To respond, note that signal form can be determined by multiple evolutionary and de-

velopmental forces at once. Signal form and receiver behaviour can be constrained, and

these constraints can play a role in adaptive explanation. There is nothing inconsistent in

the idea that signals nonetheless bear mapping relations to world affairs. Animal signals

span a broad volume within the interaction hypercube (section 1.5). Constraints and con-

tent both contribute to, rather than compete for, signalling explanations. For example, in

the case of the waggle dance, certain physiological constraints have been proposed to ex-

plain a systematic error in dance performance (Preece and Beekman, 2014) (see the case

study on page 282). This does not threaten the mapping relation between the form of the
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dance and the world affair it signifies. It simply reduces the accuracy, hence the efficacy,

of the dance. Indeed, the extent to which the dance is hampered by this constraint could

be measured in terms of how it affects transmission rate. Such measures could contribute

to phylogenetic models of the origin of the dance (see section 7.3 for suggestions how to

represent constraints in sender-receiver models, and section 7.4 on the work of Dumont et al.

(2014) testing hypotheses about evolutionary optima).

Now, it is of course true that communication theory does not typically consider con-

straints on signalling behaviour. The central model assumes a free choice of code. There

are costs to sending longer signals (corresponding to power costs in electrical equipment),

and perhaps signal detection theory discusses issues related to costs of precise recovery of

signals in the face of noise. What is needed here is a principled extension to communication

theory, one that considers optimal joint behaviour from the perspective of restricted design

capabilities. Models of communication from an evolutionary perspective would afford much

less freedom of choice of encoding. In particular, the code – the form of the signal – that de-

velops through coevolution will be simultaneously constrained by competing adaptive needs

of both sender and receiver. Crucially, it could still be the case that coadaptation plays a role

in explaining signal form, even though several different kinds of constraint play a role too.

As with contentless signals, the prevalence in nature of constrained signals does not threaten

the propriety of an informational approach to biological communication.

Finally, consider ‘signals’ that are not the result of coadaptation. The informational

paradigm in behavioural ecology assumes that the function of signals is to transmit infor-

mation between sender and receiver. But in situations where sender and receiver have con-

flicting interests, there is no such function for signals to serve. Animals without common
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interest do not perform joint functions. Since the informational approach defines signals in

terms of joint function, it would be forced to conclude that these interactions are not signals.

This is at odds with the practice of behavioural ecology. The majority of animal signals are

threatened with divergent interests. To argue that such behaviours are not truly signals would

be to narrow the application of that term so radically as to render it almost useless. Thus,

ORR and others promote a more inclusive definition of signal in terms of the influence one

animal exerts over another.

One option here is to bite the bullet. The ‘signals’ highlighted by ORR as part of their

critique do seem to be influence, the third category of interaction we discussed in chapter 1.

Just as with cues, influence blends into signalling when differential benefit becomes coad-

aptive. Just because there exist interactions that predominantly benefit senders, does not

mean there are no cooperative signals in nature. It certainly does not entail that cooperative

signals should be understood in terms other than information. Moreover, only absolutely

conflictual interactions lack a joint function, cases in which the entities have no common

interest whatsoever. Although the majority of animal signals are threatened with divergent

interests, they are also maintained by common interests. Sexual signalling can continue even

in the face of deceptive males, because it is at least sometimes beneficial for females to mate.

There are borderline cases, and the features of signals that are due to cooperation rather than

conflict are still apt for informational explanation. Finally, influential behaviours sometimes

display similar design to signals. Repetition of stereotyped action patterns, and high visual

salience of morphological features, are common aspects of efficacy design that work both

in cooperative and conflictual contexts. As a result, the design principles of evolutionary

communication theory may help us understand the form of influential behaviours just as they
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do cooperative signalling.

The tripartite categorisation of signals, cues and influence is a rough covering of many

possibilities. Existing models within evolutionary game theory are explicitly designed to

study these situations. In particular, work inspired by Skyrms’s sender-receiver framework

has explored the limits of communication in noncooperative settings (Martínez and Godfrey-

Smith, 2016; Wagner, 2012), as well as different rates of evolution (Brusse and Bruner, 2017).

Further, making this distinction will likely help ORR achieve at least one of their goals. They

aim to stop theorists searching for the wrong explanations of signalling behaviour. By distin-

guishing three categories of animal interaction, they can vividly point out that the majority

of cases are closer to influence than coadapted signals. The hypercube analysis presented

in section 1.5 allows us to distinguish cooperative situations, typified by the social insects,

from those with multiple conflicting evolutionary forces. Above we saw that distinguishing

efficacy and strategic design allows practitioners to discover the correct explanation of signal

form. The same holds here: distinguishing signals, cues and influence allows practitioners

to determine into which category a particular interaction falls. Intermediate cases exist. But

these categories remain valid.

7.2.2 Evolutionary communication theory accommodates a wider class

of interactions

The problems just discussed motivated Dawkins and Krebs’s original suggested redefinition

of signalling:

To summarize the point of view we are adopting: as an inevitable byproduct of
the fact that animals are selected to respond to their environment in ways that



279 7.2. Background and motivation: the information debate in behavioural ecology

are on average beneficial to themselves, other animals can be selected to subvert
this responsiveness for their own benefit. This is communication.

Dawkins and Krebs (1978, p. 285)

The authors explicitly conflate influence and coadapted signals. By contrast, the informa-

tional approach highlights an important difference between them. Just as parasites must

walk a fine line between exploiting and destroying their hosts, so senders must strike a bal-

ance between reliably manipulating receivers and driving them out of existence. We proceed

on the assumption that signalling can only exist when some mechanism helps maintain equi-

librium, preventing one or both parties going extinct. One obvious example is common

interest, when the same behaviour brings benefit to both sender and receiver. But there may

be other mechanisms maintaining the stability of an interaction, thus helping to explain why

we observe it.3

Theoretical and modelling work should continue to expand their horizons regarding ma-

nipulation and constraint. One party in an interaction characterised by partial common inter-

est may be at risk of extinction, but which one (and why) will be an empirical question in

each case. The mechanisms evolution has thrown up that prevent extinction, thus prolonging

signalling behaviour, may be many and varied. Part of the work of theory-building is to find

a taxonomy of such mechanisms and outline their symptoms, which can then act as diagnos-

tics for field workers to employ (see for example Hurd and Enquist (2005)). Dawkins and

Krebs promote the view, later picked up by ORR, that in the vast majority of cases we will

find general-purpose receiver perceptual mechanisms being exploited by special-purpose sig-

3One question I do not address is the extent to which the stability of a phenomenon explains our observation
of it. Since evolution by natural selection is plausibly still causing changes in populations, we would expect to
observe at least some unstable behaviours. What we need, I suppose, is a theory that delivers predictions about
both change and stasis – even if the timescale of such predictions is too large for us to easily test.



Chapter 7. Evolutionary communication theory 280

Interactions (general) Signalling (specific)
Normative framework;

Rational agents Game theory Communication theory

Descriptive framework;
Evolutionary agents Evolutionary game theory

Evolutionary
communication theory

Table 7.1: Evolutionary communication theory in relation to three well-known theories.

nalling behaviour. So be it: theoretical work will uncover a wider class of forces than those

manifested in nature.

All of this is apt – none of it threatens our account of information. Evolutionary game

theory has been used to explore interactions of divergent interests, and it shades into commu-

nication theory when the interests are common and there are fewer physiological constraints.

Evolutionary communication theory borders these two theories (see table 7.1). Weakening

the assumption of common interest does not preclude mathematical analysis. It means that

the mathematics gets more general and its interpretation perhaps more difficult. It means

mechanisms other than ‘honesty’ maintain signalling interactions. It means we should look

not just for static equilibrium behaviour, but ongoing arms races. ORR, and others such as

Sarkar (2013), believe that none of this mathematics will have anything to do with communi-

cation theory. Throughout this thesis, I have tried to show that is an overly narrow conception

of the links between communication theory and game theory.

Let us end this section on a positive note. ORR have clearly presented important con-

siderations for evolutionary perspectives on communication. Animal interactions are beset

by divergent interests and physiological constraints. Natural selection does not give rise to

perfect forms. Evolutionary models tend to make assumptions trading realism for tractabil-

ity. We must incorporate a diverse range of signalling phenomena, such as male surfperch
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colouration, into our investigations.

7.3 What is evolutionary communication theory?

Evolutionary communication theory frames explanations of signalling behaviour in terms of

four principles:

1. The goal of communication (conceived as a piece of behaviour, a morphological struc-

ture, or an emission) is coordinated function.

2. Environmental noise threatens the efficacy of signalling behaviour.

3. Divergent interests threaten the stability of signalling behaviour; signals become more

cue-like or influence-like as interests diverge.

4. Physiological constraints narrow the range of available signalling behaviours.

Incorporating all four principles into a single framework suggests a way to organise bio-

logical signalling research. Philosophers such as Skyrms (2010, §3) and Scarantino (2015)

downplay the distinction between signals and cues. Biologists such as Dawkins and Krebs

(1978) and ORR downplay the distinction between signals and influence. I want to empha-

sise both distinctions, and keep them at the heart of evolutionary communication theory.4

The first five chapters concerned the first two principles, while chapter 6 investigated the

third. A few remarks on physiological constraints are therefore in order.

4It should be noted that the account does not define signals in terms of information. As Scott-Phillips
(2008) points out, a definition of signal based on coadaptation (such as that given in chapter 1) already entails
that signals carry information.
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7.3.1 Physiological constraints

Constraints reduce the space of strategies available to a biological device. By correctly iden-

tifying constraints, a scientist can reduce the space of adaptive explanations they can appeal

to.

There will likely be different communicational constraints for senders and receivers. Re-

ceivers face trade-offs because their sensory systems are typically multi-purpose. They must

deal with cues as well as signals. Often they must reliably recognise salient objects across a

range of environments.5 The surfperch case study provided a particularly vivid example of a

sensory trade-off. Inherent properties of the dichromatic visual system constrained available

strategy space. By identifying this constraint, Cummings was able to suggest and test for a

hypothesis about divergence of surfperch species from an inferred ancestral state. Senders,

on the other hand, face different kinds of constraint. Take for example the systematic error

in the honeybee waggle dance, described in the following case study.

Systematic error in the waggle dance

As we saw in section 2.2, the honeybee waggle dance indicates the direction and

distance of food. In performing the dance, sender bees are subject to a peculiar kind

of systematic error. The directional component of the dance is relatively less accurate

for food sources that are closer to the hive (Preece and Beekman, 2014). Now, one

would expect that accuracy in general decreases for food sources that are further away

from the hive, and this is indeed what happens when distances become very great. But

within an ecologically relevant region scouted by bees, the following curious error

5Online learning helps: once the capacity to recognise is sensitive to environmental variation within a
single lifetime, one-size-fits-all sensory systems are less of a liability.
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occurs. The area of the region indicated by the dance remains roughly the same at

different distances. This is unusual: if signal accuracy were uniform over different

distances, the area of the indicated region should increase as distance from the hive

increases. Suppose for example the dance carries 3 bits of information about the

angular location of food, meaning it reduces the space of possible directions receivers

should fly down to 1
8 of its original size. The further a food source is from the hive, the

larger the circle around which directional information is provided, hence the larger is

the angular region of search space remaining once it has been cut down to 1
8 . Therefore,

if angular information in the dance was constant, search space would increase for food

patches further from the hive. But that is not what is observed. Surprisingly, search

space remains constant for a range of distances from the hive, meaning that more

angular information is provided by the dance for food patches that are further away.

Initially, biologists believed that the tendency for search area to remain constant was

an adaptive feature of the waggle dance. Various suggestions about the evolutionary

benefit of such an ‘error’ were advanced. For example, the sender bee might itself

be uncertain about the location of the food patch it found, thus it directs receivers to

search in that general area. Another adaptive hypothesis states that food patches are

more likely to be found near to each other than at random, meaning that receivers who

miss the indicated food source are nonetheless likelier to find food in its vicinity than

if they had searched the whole region.

However, arguments that systematic error is an adaptive feature of the dance do not

withstand scrutiny. Preece and Beekman (2014) adduce several lines of evidence in
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favour of an alternative hypothesis. They convincingly argue that sender bees are

constrained in how precisely they can convey angular information. The constraint is

tighter for food patches closer to the hive, leading to less accurate indication.

What kind of physiological features could account for this phenomenon? Recall that

distance from the hive is indicated by the length of the straight run of the dance, while

direction is indicated by the angle off the vertical (figure 2.1). It turns out that it is

difficult for a sender to find the correct angle off the vertical each time it returns for

another straight pass. Like a drunk motorist walking a policeman’s white line, it helps

to build up some momentum. For short runs, bees do not have time to align themselves

with the correct angle. On average, short dances will have a larger angular error. On

the other hand, when the straight run is long, initial wobbles are smoothed out and

the average angular precision is higher. It is a simple consequence of the physical

relationship between two aspects of the dance that angular error increases as food is

closer to the hive.

Selection can only choose from the available variants; this will always be a smaller set than

the conceivable variants.

7.3.2 Modelling constraints in signalling games

The main difficulty theorising about constraints is determining what they are in the first place.

If there are difficulties in modelling constraints, they are less important. However, I note that

these kinds of constraints are not typically included in models inspired by Skyrms (2010).

Since I am working in that tradition, this should be understood as a call for more appreciation
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of the role of constraints in these models, as well as more innovative methods of representing

constraints within models generally. Most optimistically, a thorough understanding of how

constraints can be manifested within models could illuminate what constraints there are on

real organisms. (By comparison, rock-paper-scissors dynamics were initially investigated in

models by Maynard Smith, before later being discovered in the wild. Here we are talking

about constraints rather than dynamics, but the idea is comparable: studying features of

models sometimes makes us more aware of different possibilities in the real world.) How

might we model constraints in sender-receiver games?

First, the space of strategies may be artificially constrained by simply omitting certain

pure strategies from the model. For example, we might demand that senders be unable to

send the same signal in different states, and so strategies P(S|W )3 and P(S|W )4 in model B.1

(appendix B) are unavailable. For a more complex example, consider the receiver strategies

depicted in model 7.1. This is a four-signal game in which receiver P(A|S)1 can distinguish

signals s1 and s2 reliably but is unable to distinguish signals s3 and s4 reliably. Conversely,

P(A|S)2 can distinguish signals s3 and s4 reliably but is unable to distinguish signals s1 and

s2 reliably. Suppose s1 and s2 represent signals distinguished by luminosity, and s3 and s4

represent signals distinguished by chromaticity. The model can then be used to represent the

surfperch case study on page 271.
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(7.1)

Second, we may add a ‘genetic’ component in order to model developmental constraints.

Instead of explicitly constructing strategy matrices, we could allow a program to generate

each matrix stochastically based on certain parameters. Instead of passing strategies directly

to the next generation, the program along with its parameters is inherited. In such a model,

developmental constraints could be represented by certain features of the developmental

program. Situations like that depicted in model 7.1 can be faithfully ensured by a genetic

program that contains intrinsic restrictions on the receiver strategy matrices it produces. For

example, the program may have a fixed amount of ‘discrimination ability’ to apportion be-

tween conditional acts, corresponding to constraints on developmental resources available

to the surfperch. The program would be able to produce a strategy that could distinguish

exactly two signals perfectly (e.g. S1 and S2). In addition, it could tell when a signal was

neither of its two favoured types (e.g. that it is either S3 or S4), though it could not tell which

of the two remaining signals it was (cannot distinguish S3 from S4). This discrimination ca-

pacity is log3 bits: it can in effect discriminate three signal types: S1, S2 and S3-or-S4. So

the developmental program would be allowed log3 bits of discrimination capacity, to appor-
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tion among its different conditional acts. Starting with such a constraint and a fixed sender

population that adopts either the S1-vs-S2 strategy or S3-vs-S4 strategy, a selective process

might converge on the receiver strategies depicted in model 7.1. Two distinct lineages could

emerge, mirroring the two surfperch strategies recorded by Cummings (2007).

Third, we may attempt to go beyond the traditional framework and consider structured

signals. Consider for example a signal comprised of two components, distance d and angle θ

that jointly indicate a location from an origin. This can be achieved by splitting the state into

two states corresponding to distance and angle, and giving the sender two corresponding

strategy matrices. We might constrain the signals that can be emitted, such that shorter

distances entail less precise angles. This would be one way to model the constraint on the

honeybee waggle dance described in the case study on page 282. The best way to implement

this constraint might be to include a noise function, such that θ is perturbed by a magnitude

randomly chosen from a distribution whose shape and size is a consequence of d.

Fourth and finally, de Polavieja’s model in appendix E assigns differential costs to sig-

nals. Optimal signalling requires balancing these ‘metabolic’ costs with the need to transmit

information at a useful rate (see also chapter 6). de Polavieja (2002) intends his model

to represent neural signalling, where the relevant metabolic costs include consumption of

the energy-carrying molecule adenosine triphosphate (ATP). Limits on available resources

clearly constitute a constraint on signalling behaviour.

7.3.3 Optimality in biology

A fully worked out mathematical framework underpinning evolutionary communication the-

ory could provide general conditions on which signalling should be selected for. Such a
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result would be akin to a complicated version of Hamilton’s rule (Birch, 2014a; Hamilton,

1964a,b).

Explanatory frameworks that employ optimality models can be useful even when the

predictions of those models fail. Predication/observation mismatch sometimes points to hid-

den costs or constraints, generating new testable hypotheses and suggesting observations

(Sterelny, 2013). Furthermore, as Birch (2017, §2.6.2) points out in the context of Hamil-

ton’s rule, such frameworks enable researchers to identify when a particular phenomenon

cannot be explained by recourse to selection mechanisms. For example, suppose two crea-

tures are observed to communicate, incurring low metabolic costs and/or low error, despite

apparently divergent interests and no identifiable physiological constraints binding them to

the interaction. In such a case the resources of the framework are exhausted, and researchers

must look elsewhere for an explanation. For Hamilton’s rule, Birch (2017, p. 60) calls expla-

nations “(partially) non-selective” when they must appeal to evolutionary processes beyond

natural selection to explain proliferation of a trait within a population. In the present context,

partially non-selective explanations must appeal to at least one other evolutionary process to

explain persistence of signalling behaviour. It is as though the combined forces of positive

selection are not sufficient to outweigh interfering factors, so something else must explain

why the organisms in question reliably communicate.6

Conceiving of evolved traits as optimal solutions to ecological problems may strike some

as illicit. Gould and Lewontin (1979, p. 581) famously derided adaptationist “faith in the

power of natural selection as an optimizing agent”. However, as Parker and Maynard Smith

6In such a case, if selection is not the source of communicative behaviour, then that behaviour is not strictly
proper-functional, and so not really communicative at all. However, behaviour that seems functional demands
explanation, even – especially – when it is not.
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(1990, p. 27) point out, optimality models “serve to improve our understanding about adap-

tations, rather than to demonstrate that natural selection produces optimal solutions.” Using

optimality models to investigate evolved forms does not require assuming that present traits

are optimal. The practice may only require assuming that traits, if they are adaptations, have

moved in a certain direction in design space in part because of the improved performance

that movement entails. The following case study is an example.

Adaptive radiation in leaf-nosed bats

Recent work on adaptive radiation combines phylogenetic reconstruction with optimi-

sation to explain the variety of forms within clades. Morphological systems afford

different performance optima, corresponding to appropriate forms for different envi-

ronmental niches. For example, in lizards, longer limbs can increase speed, but shorter

limbs can improve stability on narrow substrates (Vanhooydonck et al., 2006, p. 4516).

Dumont et al. (2014) investigated which of two performance criteria was most im-

portant in the selection pressures underlying the cranial shape of different species of

leaf-nosed bat. The performance criteria were mechanical advantage, a proxy for bite

force, and von Mises stress, a proxy for structural strength (where low stress correlates

with high strength). Using a morphological space whose dimensions are cranial length

and width, the authors generated a morpho-performance space in which computer-

generated cranial shapes are evaluated based on their performance against the two

criteria. They used plausible phylogenies calculated from genetic data to constrain the

historical trajectories of different clades across morphospace from the inferred ances-

tral state. They then compared two sets of models: one in which selection occurs with
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respect to optimal cranial shapes that differ based on the dietary regimes of different

species, and the other in which selection does not occur and variation in cranial shape

is due to a random walk across morphospace.

The study found that mechanical advantage was a more significant factor in explaining

adaptive radiation. Short-faced bats, for example, exhibit high mechanical advantage

because their diet of hard canopy fruits requires a high bite force In contrast, nec-

tarivores display low mechanical advantage because their long, narrow snouts – a

requirement for long, nectar-reaching tongues – do not support high bite force. This

approach brings quantitative methods to previously informal hypotheses about adap-

tive radiation and speciation, such as Darwin’s iconic finches (Marsh, 2015).

Notably, at least one of the study’s predictions failed. The authors predicted that

frugivores and Short-faced bats would exhibit selection for low von Mises stress, on

the grounds that they need higher bite forces as part of their diet, and this requires

physical support from greater structural strength. One explanation for this lack of

selection is that “the cranium never approaches the critical stress (i.e., the material

strength of bone) during normal activities, and therefore routine stress is unlikely to

play a role in shaping the evolution of cranial form” (Dumont et al., 2014, p. 1445).

What is important is not the precision of measurements that led to this conclusion, but the

possibility of quantifying performance criteria. This is required before optimality models can

be applied. Perhaps future work will combine phylogenetic reconstruction with optimality

models taken from communication theory. One strength of evolutionary communication

theory is that its principles are founded on existing mathematical methods, opening the door
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to investigations of this kind.

Overall, evolutionary communication theory provides a framework for explanation of

biological signalling behaviour. In the next section I argue that evolutionary biologists com-

monly employ communicational thinking, a set of assumptions that ground accepted explana-

tory practices.

7.4 Communicational thinking in biology

In this section I survey biological texts and highlight explanations given in terms of coordi-

nated behaviour, divergent interests and physiological constraints. By treating sender and

receiver strategies as evolutionary solutions to engineering problems, we help ourselves to a

certain kind of adaptationist explanation. Such explanations are widespread in biology, and

their salience goes unquestioned.

7.4.1 Trading effort and error

In chapter 6 I discuss a generalisation of two optimality approaches in communication the-

ory. Rate-distortion theory and capacity-cost theory usually treat independent problems in

communications engineering. The former theory deals with a trade-off between error and

transmission rate, while the latter deals with a complementary trade-off between effort and

transmission rate. Unifying them provides a general optimality model for communication,

using transmission rate as an exchange rate between two kinds of cost. Studies of biological

communication often pick up on aspects of this general framework.

Preece and Beekman (2014, p. 19), writing in the context of the waggle dance, speak
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of “an inherent trade-off between effort and usefulness; communication is most worthwhile

when the benefits of sending the signal exceed the cost of its production”. This is the very

same trade-off at the heart of rate-distortion theory (chapter 6). A few scientists explicitly

consider the application of that theory in biological contexts (de Polavieja, 2002; Iglesias,

2016; Sims, 2016). But even those without knowledge of an existing mathematical frame-

work would accept the logic described by Preece and Beekman.

The trade-off between effort and error emphasises the sender in a signalling interaction.

But the receiver has a role too, as Endler makes clear:

Receiving mechanisms probably evolve to increase the efficiency and reliabil-
ity of information reception whereas signals probably evolve to increase the
efficiency of communication and reliability of manipulation of the receiving in-
dividual to the benefit of the emitter.

Endler (1993, p. 215)

These two selective forces come apart when interests diverge. Intuitively, common interest

determines the extent to which these two selective forces act in tandem or conflict with each

other.

Similarly, Marian Stamp Dawkins (1993, p. 251) discusses three selection pressures on

signals that may sometimes push in different directions: “the degree of conflict or coopera-

tion, the ‘efficacy’ of signals and how signalling costs are paid.” She raises the difficulty of

devising general principles of signal design due to the variety of selection pressures acting

on communicative interactions. However, if I am right, there are at least four such principles.

Dawkins raises a challenge for unifying frameworks such as evolutionary communication

theory: they must “explain the diversity in size of animal signals and they must explain the

diversity in form of signals” (Dawkins, 1993, p. 251). But evolutionary communication the-
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ory says nothing about explaining diversity in size or form. It is a framework within which

the properties of particular signals can be investigated. That being said, there is a sense in

which the theory ought to apply ‘globally’. Where biological signals are observed, it ought

to uncover the mechanism(s) maintain them; where signals are not observed in social inter-

actions (or where they quickly collapse upon being established), the theory ought to explain

why. In the best case, the theory ought to generate predictions about which social interac-

tions will be mediated by signalling. It is then a test of the theory whether signals do indeed

appear in those situations.

7.4.2 Adapting to constraints

Romer (1993) considers long-range signalling and hearing in acoustic insects, particularly

the role of constraints in explaining signalling strategies. Consider an example of a simple

explanatory principle of this kind:

Given that small size forces most insects to use higher frequencies, with the in-
herent problem of excess attenuation, we might predict that behavioural strate-
gies (e.g. optimal broadcast positions), would be of significance in the evolution
of acoustic signalling. Because scattering of sound within the vegetation seems
to be the major cause of attenuation, insects should call from the top of the
vegetation or close to it.

Romer (1993, p. 180)

In support of this hypothesis, Romer cites observations of the bog katydid (Metrioptera

sphagnorum) which calls from around 60cm up isolated spruce trees. Higher trees are avail-

able, but the diminishing returns of increased broadcast area versus climbing effort (along

with other constraints such as increased exposure to predators) explain why that particular
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height is optimal. This choice of height is a component of efficacy design. It is a means of

countering noise inherent to signals pitched in the frequency range available to insects.

Romer (1993, p. 180) further notes features of insect signals that can be explained by

reference to specific features of the environment: “Broad-band signals appear to be less

vulnerable to amplitude fluctuations than are pure-tone signals [and] most bushcricket and

grasshopper sound signals are broad-band rather than pure-tone.” Insect signals are typically

highly redundant, comprising continuously repeated phrases. Repetition is a rather unso-

phisticated (yet effective) means of counteracting environmental noise. Furthermore, certain

signal features are unsuitable for indicating certain referents. Species identity, for example,

is often a crucial component of signal variation. It would be inefficient to recruit a noise-

prone aspect (such as tooth impact rate) to indicate the sender’s species, except on small

spatial scales (Romer, 1993, p. 180). All these considerations are the result of communi-

cational thinking: receiver behaviour is assumed to be conditioned on signals; signals are

adversely affected by interference; therefore, signal design can be explained by reference to

the properties of the environment that constitute noise. Mechanical features of stridulation

can be explained by reference to these communicational features (Montealegre-Z, 2009).

7.4.3 Efficacy design in bird calls

Maynard Smith and Harper (2003, §5.2) describe how the function of a call can explain its

acoustic features:

‘Flee’ alarm calls, given to a cluster of individuals in immediate danger of attack,
for example from a hawk, and causing all individuals rapidly to disperse, we
would expect to be hard to locate, and not necessarily audible from a distance.
‘Assembly’ alarm calls cause hearers to assemble from a wide area, perhaps to
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mob a potential predator: we would expect them to be easy to locate, and audible
at a distance.

Maynard Smith and Harper (2003, p. 74)

The authors cite Marler (1955) as providing evidence for these hypotheses.

These considerations accord with principles about both joint function and divergent inter-

ests. The function of the Assembly call explains its form: wide-ranging, but easy to locate.

The risks associated with eavesdropping explain the form of the Flee call too. Hawks use

Flee calls as cues, leading to cryptic design: short-ranged, and hard to locate. Perhaps cryp-

tic design ought to be considered a form of efficacy – or ‘anti-efficacy’ design, since they are

in a sense diametrically opposed.

7.4.4 Social recognition and quality signalling

Social recognition is the use of cues and memory to assess conspecifics. Quality signalling

is transmission of the same informational content, but via signals rather than cues. Shee-

han and Bergman (2016, p. 2) treat social recognition and quality signalling as two distinct

“assessment strategies”, and investigate the “functional and evolutionary relationships” be-

tween them. A simple initial account was given by Rohwer (1982): in small groups, social

recognition suffices; in large groups, memory constraints entail a need for quality signalling.

Sheehan and Bergman (2016) expand on that earlier work and lay the groundwork for quan-

titative models. Their suggestions derive from the simple idea that social recognition and

quality signalling are two means to the same end, so selection likely favours at most one of

them. As a corollary, when the mechanism underpinning one conflicts with the mechanism
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underpinning the other, selection ought to favour one over the other.7

For example, in birds, brain size is negatively correlated with pheomelanin plumage

(Sheehan and Bergman, 2016, p. 9). While brain size can be used as a proxy for social

recognition capabilities,8 pheomelanin is known to play a role in signalling quality. We

expect to see selection favour one of these features at the expense of the other, depending on

social and environmental factors in the evolutionary history of each bird species. Just as with

differing visual capabilities in surfperch, and adaptive radiation in leaf-nosed bats, variation

in strategy investment in birds can be explained by reference to the goal of signalling (and

cue reading) and inherent constraints on the strategies involved.

7.5 Communication theory in biology

In this section I survey biologists who explicitly refer to communication theory in explana-

tions of signalling behaviour, showing that their approach is best interpreted by evolutionary

communication theory.

7.5.1 Behavioural ecology

Among behavioural ecologists, the most concerted effort to employ mathematics in the study

of communication has perhaps come from R. Haven Wiley (1983, 1994, 2013a, 2017). Over

several decades, Wiley has argued for the direct application of the central model to animal

7On the other hand, if receivers recognise the cue and the signal with the same perceptual mechanisms, se-
lection for one might entail improved performance with regard to the other. And if the information is extremely
important, it might be worth maintaining both kinds of ability to ensure robustly reliable recognition.

8Two (significant) caveats: first, if brain size is a proxy for cue-reading then it is also likely a proxy for
signal-reading; second, using brain size as a proxy for anything is often difficult to substantiate (Healy and
Rowe, 2007).
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communication. Wiley (1983) claims signals literally encode relevant aspects of the world

such as the sender’s suitability as a mate, strength, or willingness to fight. He also discusses

game-theoretic considerations, such as the evolutionary stability of strategies in Prisoner’s

Dilemma games. Later, Wiley (1994) considers the trade-off between false positives and

false negatives that shapes receiver strategies, drawing on results in signal detection theory.

These investigations are closely related to rate-distortion theory (chapter 6), though Wiley

does not appear to be aware of that approach. More generally, Wiley (2013a) justifies the

use of concepts and models from communication theory in the study of animal signalling.

Finally, Wiley (2017) describes twelve principles (or “predictions”) about the evolution of

communication in the presence of noise.

The particular mathematical approach Wiley favours is signal detection theory. That can

be thought of as a receiver-focused subset of communication theory. However, this focus

on receivers as individual decision makers backgrounds the significance of signalling as a

joint enterprise. For example, Wiley treats divergence of interest as a source of noise. As

we saw in chapter 6, that can be a useful perspective to take when answering questions

about receiver behaviour. But in order to understand properties of the system as a whole, it

should be treated as a joint enterprise that simultaneously optimises transmission efficiency

and accurate response. Furthermore, instead of applying results from signal detection theory

directly to biological situations, it would be better to develop a version of the theory that

incorporates physiological constraints. For example, in contexts where receiver sensitivity

derives from a pre-existing cue-reading adaptation, we can better understand the transition to

signalling by figuring out which kinds of variation were likely to occur. Wiley (1994, p. 177)

mentions external constraints on signal form such as the need to avoid alerting predators.
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He is aware of the various forces that impact signalling behaviour, and his approach is an

important step forward for understanding biological communication. It would benefit from

incorporating ideas I have argued belong to evolutionary communication theory.

Another theorist who welcomes communication theory in biology is Jack Hailman. Hail-

man (2008) uses coding strategies as an organising principle. He categorises evolutionary

and artificial signals with respect to the coding strategies they employ. For example, discre-

tised signals are those that use discrete values to encode continuous referents (Hailman, 2008,

Table 3.5 p.116). Artificial signals of this type include digital watches, digital speedometers

and digital radio tuners. Hailman identifies several animal signals that fit this description too.

For example, the South American electric fish Sternopygus macrurus produces electrical im-

pulses using a muscle near the tail. Juveniles pulse at frequencies proportional to their size,

which can be treated as a continuum. Adults, however, only emit pulses within a small range

of frequencies, depending on their sex. The pulse continuum has effectively been discretised

into two sets, indicating sex rather than length. Other examples appear in Hailman’s table

2.1 (pp. 72-3), table 3.5 (116-7) and table 4.4 (160-1).

The success of Hailman’s project rests on the contention that coding principles are in-

dependent of the modality of communication. Signals designed by humans and signals

designed by evolution can be understood through a common functional analysis. Signals

produced in the visual, auditory, chemical or other domain can all be analysed in the same

way. Hailman accepts that specific measures of surprisal, entropy and transmission rate are

not as important as the conceptual organisation provided by the engineering approach. What

is most important is the common form taken by explanations of signalling strategies. At

its broadest, the optimism Hailman endorses pushes towards a generalised view of commu-
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nication theory. Because communication is a phenomenon distinguished by its functional

shape – codesigned senders and receivers whose joint functioning is mediated by relatively

low-energy states – the same design principles apply to every instance of communication,

whether natural or artificial.

Hailman’s approach would be improved by acknowledging the principles of evolution-

ary communication theory. Coding schemes in nature are not freely chosen, but are often the

result of physiological constraints. For example, we might imagine that the discretised code

of the electric fish originated as a side-effect of sexual dimorphism: females, being smaller,

tended to produce pulses whose average frequency was noticeably different from those of

males. Of all the cues that might have been enlisted by selection to become signals, this

was the one most amenable to tinkering. In this hypothetical scenario, the ‘code’ is largely

a by-product, which was only refined late in selection history to improve detection of sex

differences. Furthermore, in a different version of the hypothetical scenario, suppose diver-

gence of interest between competing males led some to adopt a strategy of pulsing at female

frequencies.9 This allows them to sneak through the territories of other males without risk

of attack. Widespread adoption of this strategy would lead to counter-selection for better

discrimination ability. The ‘code’ is then not purely a consequence of cooperative selection,

but has been refined by selection acting on competing senders and receivers.

In sum, while Hailman adopts an idealised perspective on animal signalling codes, we

can pursue more realistic analyses by adopting the perspective of evolutionary communica-

tion theory.

9Male cuttlefish are known to adopt a strategy of this kind (Hanlon et al., 2005).
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7.5.2 Molecular signalling

In the microscopic domain, mathematical work is burgeoning in the relatively new field of

molecular communication theory. Two related approaches fall under this heading: under-

standing microbial signalling behaviour with respect to engineering concepts, and develop-

ing microscopic communication systems. Adam Noel and colleagues take the first approach,

providing a simple justification for interpreting biological communication through the lens

of engineering:

Signals are being regularly transmitted within and between individual cells and
microorganisms. These signals may not be sending packets of data in the con-
ventional communication sense, but nevertheless they enable conventional com-
munication applications such as sensing, coordination, and control. Thus, we
can adapt conventional communication engineering theory and techniques to
study these signaling mechanisms and understand how they work.

Noel et al. (2017, p. 1)

Biological entities do not instantiate the central model – they do not reconstruct symbol

strings – but they do use signals to achieve the same goals that humans developed the central

model for in the first place. The concepts of communication theory apply in both domains

because the applications are the same, even if the mechanical details are not. The argument

suggests a general motto in line with the considerations we have developed throughout this

thesis: it is the function, not the mechanism, of communicative behaviour that justifies using

concepts, methods and tools from communication theory in biology.

Studies of molecular signalling would benefit from adopting the perspective of evolution-

ary communication theory. Explicit consideration of divergence of interest is lacking within

communication-theoretic models, because it has not previously been clear how to generalise
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communication theory to non-cooperative contexts. Such ideas exist in game-theoretic ap-

proaches to bacterial communication (Diggle et al., 2007a). Furthermore, taking account of

constraints on signalling and cue-reading could illuminate the dynamics of microbial social

interactions. Bacteria are likely far more constrained in their behaviour because of limited

(perhaps absent) ability for associative learning. But their relatively faster rates of evolution

– plus the possibility of horizontal gene transfer – can lead to interesting social dynamics.

Overall, studies of microbial communication would do well to consider the evolutionary

framework described in this chapter.

7.5.3 Genetics and evolution

Bergstrom and Rosvall (2011) argue for interpreting the genetic code as a solution to tra-

ditional communication-theoretic problems. An inheritance system must reliably transmit

instructions across generations which can be read in development. The specific problem fac-

ing the transmission part of this two-step process is to efficiently ‘package’ those instructions,

avoiding costly mistakes induced by noise or misreading. The authors argue that the genetic

code shows features designed specifically to counteract or mitigate such untoward events

(Bergstrom and Rosvall, 2011, pp. 173–4). This is channel coding, as opposed to source

coding (cf section 5.5 and appendix A). They also reject the Shannon/semantic distinction,

framing their own “transmission” interpretation in contrast to both those perspectives (cf

section 3.5). Although in the present work we are not concerned with genetics, it is salient

to mention that many of the points I am trying to support have similar justification in that

context.

Once again, this work would benefit from explicitly considering principles of evolution-
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ary communication theory, particularly failures of common interest. For example, outlaw

genes are those that reproduce at the expense of the fitness of genome of which they are

a part (Alexander and Borgia, 1978). By exploiting the properties of mitosis, outlaws are

able to get themselves over-represented in the gametes that will become the next generation.

These genes do not promote the fitness of the organism. Indeed, they hamper the fidelity of

the inheritance system conceived as a process designed for information transmission. The

question whether outlaw genes can be fruitfully considered ‘noise’ – and, if so, how the sys-

tem ought to be designed to combat it – is one that could be asked from the standpoint of

evolutionary communication theory.

In separate work, Bergstrom and colleagues have pushed for biological interpretations

of definitions and equations originally presented in a communication theory context. Both

Bergstrom and Lachmann (2004) and Donaldson-Matasci et al. (2010) connect biological

fitness (interpreted as growth rate of a lineage) with the transmission rate of a cue channel.

Inspired by the definition of transmission rate given by Kelly (1956), the authors combine

utilities and probabilities to define the increase in fitness that results from conditioning a

behavioural strategy on an environmental cue. Kelly’s exposition concerns a gambler’s win-

nings. By casting that work in biological terms, Bergstrom and colleagues offer an explicit

justification for applying mathematical measures to biological cues. To my knowledge they

do not extend the interpretation to signals, nor do they investigate rate-distortion mathemat-

ics that apply to communication rather than cue-reading. Nonetheless, their mathematical

treatment prompts a literal interpretation of engineering definitions in biology.

Overall, a minority of biologists embrace the prospects for communication theory in

biology. My hope is that evolutionary communication theory provides positive branding for
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their cause, assimilating their ideas around a single label and highlighting its relationship to

already well-established modelling frameworks like game theory.

7.6 Objections
7.6.1 Complexity: It is too difficult to calculate and/or measure the

variables mentioned in communicative trade-offs

Objection. The variables in proposed models of evolutionary communication include func-

tional success, noise, metabolic expenditure, physiological constraints and divergence of

interests. Even if we could adequately put these together into a model, it would not be possi-

ble to experimentally test for them in a given situation. Therefore, the proposed framework

is intractable, and cannot inform biological practice.

Response. Let us first clarify the objection. In particular, notice how it differs from

Owren, Rendall and Ryan’s (ORR’s) objection to communication theory in behavioural ecol-

ogy. ORR complained that information was not an appropriate concept for animal com-

munication. Their reasons included the effect of constraints and divergence of interests in

signalling systems. Once it has been shown that these factors can be accounted for within an

expanded, evolutionary communication theory, ORR’s initial challenge has been met. The

current objection is different. It says that the modelling practices implied by evolutionary

communication theory are too difficult to implement.

As a second clarificatory point, note that the objection is not to the accuracy of models

in the proposed framework. That a model is difficult to implement cannot be a mark against

a theory’s validity. If evolutionary communication theory did not adequately describe the
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trade-offs that explain signalling behaviour, that would be one thing. But the complaint is

about complexity rather than accuracy.

Now to respond to the objection proper. Far more complex modelling frameworks than

the one proposed here have been implemented in biological research. Evolutionary com-

munication theory considers four fundamental aspects of signalling behaviour (coordinative

function, environmental noise, divergent interests, physiological constraints). In comparison

to some evolutionary models, this is positively sparse. I agree that such features would be

hard to measure. But their initial use would be like that of the terms in Hamilton’s rule:

employed in idealised models and as part of an organising framework, only later measured

or estimated when empirical methods improve (Bourke, 2014; Gorrell et al., 2010).

Furthermore, I do not suggest that this is a novel modelling framework that can explain

old phenomena in new ways. Rather, I suggest that existing patterns of explanation – some-

times well-established and widely accepted patterns – should be conceptualised within a

framework such as that which I have described. I have also given the framework a name,

partly to highlight mathematical links with both communication theory and evolutionary

game theory, but also to unify disparate research programs working with the same explana-

tory tools. I believe that interpretive issues around the term ‘information’ would largely

disappear were this framework to be adopted.

Some further remarks are in order. Notice that this is not a question of choosing the

simpler theory. The objection has nothing to do with Occam’s Razor. For that to be the case,

there would have to be competing theories that purport to explain the same phenomena. The

accuracy of the theories would have to be reasonably similar, such that simplicity could act

as a tie-breaker when scientists choose between them. That is not what is going on here. It
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is not as though we have competing theories of signalling behaviour, and some alternative to

evolutionary communication theory is simpler.

Rejoinder. Influence-based definitions of communication such as those promoted by

Dawkins and Krebs (1978) and Owren et al. (2010) are alternatives to evolutionary commu-

nication theory. Suppose we could demonstrate that the influence-based definition entails a

simpler theory of animal signalling. Then, by Occam’s Razor we would have reason to reject

evolutionary communication theory.

Response to rejoinder. If this were indeed the structure of the current dialectic, it might

well be worth considering issues of simplicity. But that is not what the debate looks like.

Influence-based definitions of signalling are not competitors to evolutionary communication

theory. In particular, they do not posit different explanations of signalling behaviour. Rather,

they place emphasis in different places. For one thing, evolutionary communication the-

ory purports to describe signalling in a much wider range of taxa than the animal kingdom.

For another, it seeks to distinguish cases based on their similarity to paradigmatic signals

(chapter 1). The issues raised by ORR motivate an influence-based definition by sidelining

cooperative signalling. But it can hardly be denied there are cooperative signals in nature.

Furthermore, as I argued in section 7.2 the considerations that prompted the influence

definition ought to be incorporated into evolutionary communication theory. That is one

major argument of this thesis: that insofar as ORR have raised relevant concerns about an

implicit cooperative bias of animal signalling researchers, we ought to develop a theory of

communication that does not take common interest for granted. I propose accepting the

core motivation for ORR’s analysis: that many (perhaps most) animal signals lie on the

influence end of the common interest dimension in the signalling hypercube. The truth of
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this statement does not threaten evolutionary communication theory.

7.6.2 Novelty: Evolutionary communication theory is not novel

Objection. By giving a name to an existing family of practices, I have done no real analytical

work. Biological studies of communication got along fine without philosophers interfering.

Indeed, by producing so many examples of biologists whose explanations I take to be aligned

with the ideals of evolutionary communication theory, I have exposed that framework as

nothing more than existing theory re-described. There is nothing novel in the approach I

advocate.

Response. This objection would hit home were it not for the fact that biologists continue

to argue about the relevance of information theory for their discipline. It is not yet appreci-

ated what explanatory role the concept of information plays. By collecting extant theoretical

approaches under a common framework, we put paid to claims that information is an idle

metaphor. Moreover, we should not dismiss the power of names. Sometimes a small change

in perspective, prompted by an apposite label, clears away years of theoretical impasse. In

the present case my label completes the square depicted in table 7.1. It suggests we have no

more reason to be wary of the concept ‘information’ than we do of concepts borrowed from

game theory.

7.7 Conclusion

Engineers make rational decisions about the communication systems they construct. Sig-

nal form depends on factors including the function to be performed, the channel through
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which the signal is to be sent, and constraints such as power availability. The same design

principles guide the evolutionary emergence of biological signals. The most significant dis-

analogy between the mathematical theory and its evolutionary counterpart is the prevalence

of imperfect common interest in biological interactions. However, even that feature can

plausibly be incorporated into mathematical descriptions of signalling behaviour. The result

is an illuminating conceptualisation of a well-established family of practices: evolutionary

communication theory.



Conclusion

A bird sits on a telegraph wire and sings. What explains its song? For it to be worthwhile, the

song must have an expected effect that brings an evolutionary benefit outweighing metabolic

expenditure. This trade-off is tempered by environmental noise that limits the song’s efficacy,

divergent interests that incentivise its audience to act uncooperatively, and physiological

constraints that restrict the song’s viable forms. The theoretical approach that licenses such

explanations is evolutionary communication theory. It is related to communication theory

in just the same way as evolutionary game theory is related to game theory. Mathematical

concepts and results first discovered in engineering apply to biological contexts.

In reaching this point, we made heavy use of mapping relations, a theoretical entity

posited by sender-receiver teleosemantics. Mapping relations are not correlations or natu-

ral correspondences. They are functional specifications of relational properties that signals

ought to bear. ‘Ought’ is to be understood in terms of proper function. Signals are special

because they mediate two or more proper functions, and as such serve a joint proper function.

Paradigmatic signals cause receiver behaviour, but the energy with which the behaviour is

performed is supplied by the receiver rather than the signal. It is this feature that warrants

an informational analysis. Mapping relations are the fundamental form of semantic content.

Far from being distinct concepts, information and content pick out the same phenomena and

play the same explanatory role. Ignorance of their identity owes much to misunderstandings

of communication theory. The special features of the central model justify claims about the

irrelevance of meaning for informational measurements. Such claims cannot be generalised

to biological contexts.
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309 Conclusion

This thesis argued for the unification of theories from three disciplines: communication

theory from engineering, evolutionary communication theory from biology, and teleoseman-

tics from philosophy. When put together, all three shed light on the concept of information.

More importantly, they offer insight into the fundamental nature of meaning, and its place in

our material world.



Appendix A

The central model of communication theory

Definitions

The central model of communication theory is a causal model with six nodes (figure A.1).

The source generates a string w that is interpreted as a message to be transmitted to the

target. The encoder converts source message w into codestring x. Upon being transmitted

through the channel, codestring x may be altered by noise. The received string, which may

or may not be identical to x, is labelled y. The decoder converts y into z.

According to Shannon (1948b, p. 379), “The fundamental problem of communication

is that of reproducing at one point either exactly or approximately a message selected at

another point.” This is equivalent to making z match w. In a sense, the choice of z is fully

under the decoder’s control. Because it is designed in tandem with the encoder, the decoder

need only have access to the transmitted string x in order to reconstruct w to a desired degree

of accuracy. First, consider how predictable x is. If the transmitted string were always the

same, the decoder would always produce the same z. The task would be trivial. As x gets

Figure A.1: The central model of communication theory.
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less and less predictable, however, the decoder will be less accurate when it simply guesses.

A useful measure will be how unpredictable the transmitted message is.

Shannon’s definition of information is a way to measure unpredictability of a message.

That an event x has probability p(x) is familiar enough. We can further associate a measure

of unpredictability to the event, log 1
p(x) . Formally, we call this quantity surprisal. Events

with lower probability are more surprising, which explains why the term 1
p(x) appears in the

definition. But why is a logarithmic function applied?

Consider an example. For two independent outcomes each with probability 1
2 , the proba-

bility of both occurring is 1
4 . If the measure of surprisal were simply 1

p(x) , then the surprisal

of either event alone would be 2 and the surprisal of both together would be 4; the surprisal

of three events would be 8, of four 16, and so on. Surprisals would multiply as probabilities

multiply. This might be fine for some uses, but there is a special role we want our definition

of surprisal to play. We want it to tell us how many symbols would be required to encode the

outcomes of these events. For two events, each with two possible outcomes, there are in total

four different possible outcomes, but we only need two binary symbols to distinguish all four

of these. As figure A.2 demonstrates, the number of symbols required to distinguish between

outcomes grows only arithmetically while the number of outcomes grows geometrically. In

other words, surprisals should add as probabilities multiply. Logarithms relate things that

grow geometrically with things that grow arithmetically. So, when figuring out how many

symbols are required to encode a given sequence of outcomes, logarithms are the right tool

for the job.

When dealing with a collection of mutually exclusive and jointly exhaustive events –

an event space – we wish to know how surprised we should expect to be. The answer is
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Figure A.2: A pictorial explanation for why the units of information are logarithmic. Defin-
ing a binary symbol as one which distinguishes two equiprobable events, a sequence of N
binary symbols distinguishes between 2N equiprobable events. The mathematical operation
that retrieves the number N from the number 2N is the logarithm to base 2: log2 2N = N. In
general, loga aN = N.
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a weighted sum of the surprisals: with probability p(x1) we will be surprised by log 1
p(x1)

,

with probability p(x2) we will be surprised by log 1
p(x2)

, and so on. Summing the surprisals

weighted by the probabilities yields the expected surprisal, or entropy, of the event space.

It can be thought of as the uncertainty regarding the set of events in question. Entropy is

greater when there are more events and/or events have similar probabilities, and it is lower

when there are fewer events and/or a small proportion of those events have significantly

greater probabilities than the others. Its formal definition is H(X) = Σp(x) log 1
p(x) .

Because the received string y is causally connected to the transmitted string x, uncertainty

about x will be reduced when y occurs. A measure of the remaining uncertainty about x once

y has been observed is the conditional entropy: H(X |Y ) = Σp(x,y) log p(y)
p(x,y) . A reasonable

definition of how much uncertainty has been reduced by the process of communication is

the prior uncertainty minus the residual uncertainty after transmission. This is transmission

rate: R = H(X)−H(X |Y ).

Transmission rate is determined partly by conditions in the channel, and partly by the

choice of code. For this reason, it is helpful to define a value that is the maximum possible

transmission rate across alternative codes. This is channel capacity: C = maxp(x)R. The

term maxp(x)R means the maximum value of R that can be achieved by changing the distri-

bution of transmitted symbols p(x). If some symbols are used much more commonly than

others, the code could be made more efficient by altering it such that all symbols are used

equiprobably. An example will help make this clear.

Consider a source that produces four symbols w1, w2, w3 and w4.1 This can be inter-

1The example is taken from Martínez (2020), who uses it to illustrate principles of source coding (see
below).
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preted as the possible outcomes of a probabilistic event such as a horse race. Suppose the

probabilities of the outcomes are not equiprobable, so:

p(w1) =
1
2

p(w2) =
1
4

p(w3) =
1
8

p(w4) =
1
8

Suppose we have a noiseless channel that supports sending signals composed of two symbols,

0 and 1. There are various ways we can assign each outcome to a sequence of symbols.

Perhaps the most obvious is to use a unique combination of two symbols, like so:

w1 → 00

w2 → 01

w3 → 10

w4 → 11

Whatever virtues this code may have, it has one significant drawback: each symbol is not

equiprobable. Because outcomes w1 and w2 are more probable than w3 and w4, the receiver

already expects to observe a 0 in the first position. And having received a first 0, they would

more often than not observe a second 0 too – indicating outcome w1, the most probable. As

a result, the entropy of X is not as large as it could be, and neither is the transmission rate:
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p(0) =
3
4 +

(3
4 ×

2
3

)
+
(1

4 ×
1
2

)
2

=
11
16

p(1) = 1− p(0) =
5

16

H(X) =
11
16

log
16
11

+
5

16
log

16
5

≈ 0.8960

R = H(X)−H(X |Y ) = 0.8960−0 = 0.8960 bit/symbol

There is a code, however, that uses fewer than 2 symbols per signal, on average:

w1 → 0

w2 → 10

w3 → 110

w4 → 111

Now the probabilities of transmitted symbols has been ‘equalised’: the first position has

equal chance of being 0 or 1; supposing the first symbols is a 1, the second position is also

50/50; and supposing the second symbol is a 1 the third position is also equiprobable. The

transmission rate is therefore:
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p(0) =
1
2
, p(1) =

1
2

H(X) =
1
2

log2+
1
2

log2 = 1

R = H(X)−H(X |Y ) = 1−0 = 1 bit/symbol

For a noiseless channel, equalising the probabilities of transmitted symbols maximises

transmission rate.

In the first code, the average length of a signal is 2 symbols (because all signals have this

length). In the second code, on the other hand, the average length of a signal is 1.75 symbols.

By equalising probabilities, we reduce the average length of transmission (thus saving on

signalling resources) without jeopardising the integrity of the message.

The definitions introduced in this section are collected in table A.1 along with their usual

interpretations in the central model.

Table A.1: Definitions used in communication theory.

Term Mathematical interpretation Intuitive interpretation

W Source string. A random variable.
Set of possible source mes-

sages

w
A specific source string. A value of

W .
Message to be sent

X Encoded string. A random variable.
Set of possible transmitted

codewords

Continued on next page
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Table A.1 – continued from previous page

Term Mathematical interpretation Intuitive interpretation

x
A specific encoded string. A value of

X .
The transmitted codeword

Y Received string. A random variable.
Set of possible received code-

words.

y
A specific string received. A value of

Y .

Signal received (may differ

from x due to noise in the

channel)

Z Decoded string. A random variable.
Set of possible decoded mes-

sages.

z
A specific decoded string. A value of

Z.

Reconstructed message (may

differ from w due to noise in

the channel or coding error)

log 1
p(x) Surprisal of event x

Uncertainty reduced upon

learning x

H(X) =

Σp(x) log
1

p(x)

Entropy of transmitted string.
How uncertain we are about

the transmitted string.

Continued on next page
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Table A.1 – continued from previous page

Term Mathematical interpretation Intuitive interpretation

H(X |Y ) =

Σp(x,y) log
p(y)

p(x,y)

Conditional entropy of transmitted

string given received.

How uncertain we are about

the transmitted string after

having observed the received

string.

R =

H(X)−H(X |Y )
Transmission rate of the channel.

Initial uncertainty about the

transmitted string H(X) mi-

nus the residual uncertainty

H(X |Y ).

C = maxp(x)R Capacity of channel. Maximum transmission rate.

Source coding and channel coding

Source coding compresses strings. It removes redundancies – patterns – in a string in order

to record it as efficiently as possible. For example, suppose your string is five hundred

1s followed by five hundred 0s. It would be a waste of space to transmit all one thousand

symbols if there was a shorter way of transmitting the description five hundred 1s followed by

five hundred 0s. Source coding offers solutions to the problem of efficient use of signalling

resources.

Channel coding prepares strings for transmission. It judiciously adds redundancy to a
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Figure A.3: The extended central model. The source encoder removes redundancies in
source string, while the channel encoder judiciously adds redundancy to counter noise in the
channel.

string, protecting the message from noise. Chosen well, channel coding ensures that even if

the codestring is distorted by noise, the original can still be recovered. For example, suppose

you send the same signal five times. Interference might affect each of those five copies in

different ways, but by taking the ‘average’ over all five received signals, the decoder might

well be able to recover the original string.

In practical contexts, source coding and channel coding are combined. Sending five hun-

dred 1s followed by five hundred 0s five times might take less time and power then sending

the entire sequence once. It will certainly be more efficient than sending the entire sequence

five times. The central model can be extended by distinguishing source and channel coding

(figure A.3).

Consonant with the two varieties of coding are two definitions of rate. Source rate

(also called information rate) is the average entropy per symbol produced by the source.

In our terminology, this is H(W ). For example, when linguists speak of the ‘entropy’ of

a language such as English, they refer to this value. The population of English speakers

is modelled as a source. The unpredictability of units of language at a particular level –

phonemes, morphemes, words, phrases – defines the source rate, which may be estimated by

studying corpora (Bentz, 2018). Channel rate (which we have called transmission rate) is

the average reduction in uncertainty per symbol transmitted through the channel. As above,
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this is H(X)−H(X |Y ).

Theorems

Two fundamental theorems establish the limits of source coding and channel coding. Each

has two versions, one in which error is prohibited and one that considers a predefined level

of tolerable error.

The source coding theorem provides an answer to the following question. Given a se-

quence of events drawn independently from the same source, how many symbols are required

to record those events with negligible error? We might imagine a source producing symbols

at a certain rate, generating a string which we must compress by encoding. Encoding gener-

ates a new string, which can be used to recover the original (assuming no noise). We want

to use as few binary symbols as possible in our encoded string: what is the minimum we can

achieve? The answer is given in terms of the entropy of the event space and the number of

events in question:

Let the event space have entropy H, and the number of events to be encoded N,
then as N tends to infinity the number of binary symbols required is NH.

Proofs can be found in MacKay (2003, §4.5), Cover and Thomas (2006, §5.4), and Shannon

(1948b, §9).

The source coding theorem with error provides an answer to the following question.

Given a sequence of events drawn independently from the same event space, how many

symbols are required to record those events with tolerable error? The problem is equivalent

to that given above, except we have some margin for error in the reconstructed string. Here

error is measured as a function of the difference between each symbol of the original string
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and its reconstructed counterpart.

Shannon (1959) showed that there will often exist a function, R(d), that is the ‘equivalent

rate’ of a source when errors are allowed. Here d is a measure of the cost of reconstructing

the wrong symbol, and R(d) is a function of it. The same source will therefore have different

equivalent rates depending on how much error is tolerated. At one extreme, a source for

which every symbol can be in error has equivalent rate zero. This is because there is no

restriction on the process by which the sequence is decoded. At the other extreme, a source

for which every symbol must be reconstructed accurately has equivalent rate equal to the

original source rate. Then the problem reduces to the original source coding theorem. These

issues are treated by rate-distortion theory (see chapter 6).

The channel coding theorem (often called the noisy channel coding theorem) answers

the following question. What is the maximum number of symbols that can be reconstructed,

with negligible error, per use of a channel with noise? Shannon (1948b, §13) showed that

the answer is C, the channel capacity. Again, this theorem links a probabilistic measure

with a quantity of symbols. Lore has it that before Shannon’s foundational text, engineers

widely assumed that noisy channels would lead to a non-negligible probability of error no

matter how low the rate of transmission. Shannon’s proof ushered in an era of optimism. He

demonstrated that there were in principle codes that could shield messages from noise, to a

certain measurable level.

Finally, the channel coding theorem with error answers the following question. What

is the maximum achievable rate R given an allowable transmission error d? As with the

corresponding source coding theorem, the answer derives from a function R(d) where d is a

measure of tolerable error. MacKay (2003, §10.3) proves that when d is the probability of
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bit error, the maximum rate is:

R(d) =
C

1−H2(d)

where H2 is the binary entropy function (MacKay, 2003, p. 2):

H2(x)≡ x log
1
x
+(1− x) log

1
1− x

Because we are now speaking of rate in a channel context, rate can increase beyond the

capacity of the channel. This raises a conceptual question: what does it mean for transmis-

sion rate to exceed capacity? Naively, such a thing is impossible: capacity is defined as the

maximum possible rate (table A.1). Contradiction is avoided by defining R as the maximum

tolerable ratio of symbols we attempt to reconstruct to symbols being sent through the chan-

nel. The original definition, H(X)−H(X |Y ), assumes that symbols must be reconstructed

perfectly. When error can be tolerated, transmission rate – the number of symbols we at-

tempt to reconstruct per channel use – can increase beyond this. Defining rate as the ratio

R ≡ reconstructed symbols
transmitted symbols , the statement R = H(X)−H(X |Y ) becomes a theorem rather than a

definition. It holds only in the special case of zero tolerable error.
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Signalling games

A signalling game is a quadruple G = (P(W ), Qs, Qr, m) where P(W ) is a normalised

vector of length l, interpreted as the unconditional probability distribution over states W ; Qs

is an l×n matrix, interpreted as the sender’s payoff matrix, Qr is a l×n matrix, interpreted

as the receiver’s payoff matrix, and m is the number of signals. The rows of each payoff

matrix correspond to a state, and each column corresponds to an act. Each cell denotes the

payoff of each unique state-act combination.

Games are schemas within which the properties of different strategies can be evaluated.

In signalling games, the strategies of senders and receivers are represented by strategy ma-

trices P(S|W ) (with dimension l ×m) and P(A|S) (with dimension m×n) respectively.

Games model strategic interactions. Games are not strictly causal models, though causal

models can represent strategic interactions too. Although in the main text I use the term

sender-receiver model to refer to causal models of signalling, for our purposes there is no

difference between signalling games, sender-receiver games and sender-receiver models; I

note the difference here for the sake of correctness. Finally, the sender-receiver framework

is the collection of sender-receiver games and causal models, plus hypotheses, explanations,

observations and predictions derived from them.

323
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Populations and individuals

Signalling games may represent populations of agents or just one agent per role (sender

and receiver). Either way, the mathematical objects used to represent payoffs and strategies

are the same. A strategy matrix defines the probabilities of acting in certain ways under

certain conditions. It may be interpreted as a single individual acting stochastically, or as a

population of agents all individually deterministic but with different strategies represented at

differing proportions. In the population case, probabilities in the strategy matrix denote what

behaviour one should expect to see when choosing an agent from the population at random.

Typically, strategy matrices change over time in accordance with a dynamic equation

which increases the frequency of a strategy in proportion to the payoff it brings. A dynamic

equation is simply a rule that states what happens at a future time step given what happened

in the past. Perhaps the most familiar dynamic equation is the replicator equation:

x′i = xi.
fi

f

Where x′i is the proportion of strategy i at the next timestep, xi is its proportion at the

current timestep, fi is its current payoff, and f is the average current payoff in the population.

The equation specifies how many copies of a strategy appear in the next population, given

that strategy’s relative success in the present environment.

Success fi is usually calculated as a simple sum of the payoff matrix components. The

game is played for one or more rounds per timestep. During each round an interaction occurs

between sender and receiver. Depending on the outcome of the interaction, payoffs are

assigned to each sender/receiver strategy. When the total number of rounds has been played,
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the timestep increases by one, and the replicator equation determines the new distributions

of strategies.

In what follows, I will continue to speak as though signalling games represent one agent

per role.

Game dynamics

One round of a signalling game proceeds as follows. A state occurs with probability p(wi), a

signal is chosen with probability determined by the state and the sender strategy distribution,

and an act is performed with probability determined by the signal and the receiver strategy

distribution. Payoff matrices determine payoffs for combinations of state and act.

The sender’s strategy matrix P(S|W ) determines how signals are chosen on the basis of

observed states. Rows correspond to states while columns correspond to signals. The matrix

therefore has the dimensions l × m. Cell ps
i j is the probability that the sender will send

signal s j upon observing state wi. The receiver’s strategy matrix P(A|S) determines how

acts are chosen on the basis of observed signals. Rows correspond to signals while columns

correspond to acts. The matrix therefore has dimensions m× n. Cell pr
jk is the probability

that the receiver will perform act ak upon observing signal s j.

Strategies change over time. At a timestep, P(S|W ) and P(A|S) represent the probabilities

of sender and receiver producing signals and performing acts respectively. We can calculate

the conditional matrix:

p(ak|wi) = Σ j p(ak|s j)p(s j|wi)

Now p(ak|wi) is the probability, for a population at a time, that act ak will be performed
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given state wi occurred. We already know the unconditional probabilities of states P(W )

because they are specified as part of the game. We can therefore derive the joint distribution

P(A,W ):

P(A,W ) = P(A|W )P(W )

and we can derive the unconditional probabilities of acts P(A) by marginalising: p(ak) =

Σi p(ak,wi).

All this together allows us to calculate both the entropy of states and the conditional

entropy of states given acts:

H(W ) = Σp(wi) log
1

p(wi)

H(W |A) = Σi,k p(wi,ak) log
p(ak)

p(wi,ak)

There is therefore a well-defined notion of transmission rate at a timestep of a sender-

receiver game:

R = H(W )−H(W |A) = I(W ;A)

Perhaps the least controversial way to interpret this term is as what an external observer

could learn about the act to be performed given that they know the state, or vice versa. No

assumption of cooperation on the part of the agents is required for this definition to hold, or

for transmission rate to be greater than zero. Payoffs might be such that sender and receiver

have fiercely competing interests; nonetheless, at some point during the game a statistical

connection may occur between states and acts. Such a connection could be a consequence
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of one party exploiting the other. If interests diverge far enough we might eventually see the

exploited party change their behaviour, and the connection will be lost. Wagner (2012) gives

a model of a zero-sum game in which cycles of exploitation continue indefinitely.

Notice the subtle but important difference between transmission rate in signalling games

and in the central model (appendix A). There, the variables over which transmission rate

was calculated were X (the encoded string that is about to be transmitted) and Y (the re-

ceived string that is about to be decoded). The equivalent transmission rate in a signalling

game (assuming no noise) is just H(S), the entropy of signals. This places an upper bound

on I(W ;A): you cannot transmit more information through a channel than that channel’s

intrinsic variation.

A line of future research is in determining whether anything general can be said about

I(W ;A) solely on the basis of payoff matrices and the unconditional probabilities of states.

Intuitively, I(W ;A) should be lower when interests diverge and higher when they coincide.

Martínez and Godfrey-Smith (2016) present some results along these lines. It seems in-

evitable there should be analytical results, extensions to the theorems outlined in appendix

A, that describe the limits on communication between conflictual agents.

A worked example

Consider the cooperative 2x2 state-act game:

P(W ) =

(
1
2
,
1
2

)
︸                ︷︷                ︸

States equiprobable

Qs =

1 0

0 1

 Qr =

1 0

0 1


︸                                    ︷︷                                    ︸

Perfect common interest

m = 2

︸  ︷︷  ︸
2 signals available

(B.1)
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Suppose we begin with a randomised strategy pair:

P(S|W ) =

1
6

5
6

3
4

1
4


︸                    ︷︷                    ︸

Sender strategy

P(A|S) =

 1
2

1
2

1
12

11
12


︸                      ︷︷                      ︸

Receiver strategy

Strategies like this are called mixed strategies because they can be thought of as linear

combinations of pure strategies. For example, the sender matrix can be written:

P(S|W ) =

1
6

5
6

3
4

1
4

=

 2
12

10
12

9
12

3
12


︸                                       ︷︷                                       ︸

Mixed strategy

=
1

12

1 0

0 1

 × 8
12

0 1

1 0

 × 1
12

1 0

1 0

 × 2
12

0 1

0 1


︸                                                                        ︷︷                                                                        ︸

Linear combination of pure strategies

In each round, one of these strategies is selected according to its probability ( 1
12 , 8

12 , 1
12 , 2

12 ).

If Sender is successful, that strategy’s payoff for this timestep is increased by 1. Suppose

there are 1000 rounds per timestep and the respective strategies enjoy the following payoffs:

P(S|W )1 P(S|W )2 P(S|W )3 P(S|W )41 0

0 1


0 1

1 0


1 0

1 0


0 1

0 1


441 127 148 200

84 turns resulted in no payoff. (These numbers are not necessarily plausible given the strat-
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egy pair and payoffs; I am using them for illustration only.) Now, the replicator equation

takes these payoffs and the proportions of each strategy and generates new proportions. Take

for example P(S|W )1:

x1 =
1

12
= 0.08333... (starting proportion of P(S|W )1)

f1 = 441 (payoff for P(S|W )1)

f =
441+127+148+200

4
= 229 (average payoff across strategies)

x′1 = x1.
f1

f
=

1
12

.
441
229

= 0.1605... (new proportion of P(S|W )1)

Strategy P(S|W )1 has almost doubled in frequency.

Converting a payoff matrix into a distortion matrix

Martínez (2019, p. 3) gives the following formula to convert payoffs into distortion measures.

Consider a payoff matrix Q. Let qmax = maxik qik and qmin = minik qik. Then the distortion

matrix corresponding to Q is defined by:

dik =
qmax −qik

qmax −qmin

For example (Martínez, 2019, Tables 1&2, p.4):

Q =


1 0 0

0 1 0

0 0 1

 , qmax = 1, qmin = 0, D =


0 1 1

1 0 1

1 1 0


A more complicated example (Martínez, 2019, Table 3, p.5):
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Qs =


2 0 10

0 2 10

0 10 0

 , qmax = 10, qmin = 0, Ds =


0.8 1 0

1 0.8 0

1 0 1



Qr =


10 0 8

0 10 8

0 10 0

 , qmax = 10, qmin = 0, Dr =


0 1 0.2

1 0 0.2

1 0 1





Appendix C

Statistical content and functional content

To give a semantics is to associate a certain kind of formal object with each element in a

system of signs. Intuitively, this formal object captures the content of a sign, what it ‘says

about the world’.

At least two semantics are relevant for signals and cues in biological systems. They

attribute what we shall call statistical content and functional content. The first is due to

Skyrms (2010, §3) and Isaac (2018), while the second is due to Shea et al. (2017).

Statistical content

Consider a probability distribution P over world states W . The statistical content of a sign s,

with respect to W , is:

S(s)︸︷︷︸
statistical

content of s

≡ < log
p(w1|s)
p(w1)

, ..., log
p(wi|s)
p(wi)

,︸           ︷︷           ︸
pointwise mutual

information of
wi and s

... > (C.1)

The statistical content of a sign s is a vector, each of whose components i is the pointwise

mutual information between s and wi. (Isaac (2018) calls such vectors s-vectors.) They cap-

ture probabilistic relationships between signs and world affairs. A typical statistical content

vector looks like this:

< 0.5,−4,3,−∞ >

331
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The sign to which this content belongs is statistically associated with four world states,

w1 through w4. It may or may not be causally associated with them. Each component of the

vector measures the change in log probability of the corresponding world state. States 1 and

3 become more likely when the sign occurs. State 2 becomes less likely, and state 4 becomes

impossible.

Why did Skyrms choose log p(wi|s)
p(wi)

as his vector entries? Because they are the compo-

nents of relative entropy, a useful quantity in information-theoretic applications such as

Bayesian epistemology machine learning. Relative entropy measures information gained

about hypotheses when evidence is observed. Its general form is:

D(P(X)||Q(X)) = Σx p(x) log
p(x)
q(x)

Interpreting Q as the prior probability distribution over hypotheses, p(H), and P the posterior,

p(H|e), relative entropy measures the difference between prior and posterior beliefs about

hypotheses H in light of evidence e:

D(p(H|e)||p(H))︸                 ︷︷                 ︸
information gained

about H from e

= Σh︸︷︷︸
sum over

hypotheses

p(h|e)︸   ︷︷   ︸
posterior

probability
of h given e

. log
p(h|e)
p(h)︸        ︷︷        ︸

information gained
about h from e

The idea is that observing evidence enables a more accurate picture of the probabilities of

different hypotheses. There are of course many different ways of measuring the difference

between two probability distributions p(H) and p(H|e). Relative entropy is special in part

because it measures the number of extra bits – binary symbols – one would need to represent

the outcomes of events drawn from p(H|e) on the inaccurate assumption that they were
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drawn from p(H). In short, it offers a concrete and useful measure of the cost of inaccuracy.

Consequently, it can be interpreted as what is gained when one learns p(H|e) from a starting

position of p(H).

Bringing this back to statistical content, Skyrms interprets H as the hypothesis about

which world state obtains, and e as the sign to which the vector belongs. Components of

the vector, weighted by posterior probabilities p(H|e), sum to the relative entropy between

prior and posterior probabilities over the world states in question. And this list of relative

entropies, weighted by the probability of receiving the corresponding signal, sums to the

mutual information between signals and states: I(W ;S). This places an upper bound on the

transmission rate of the signalling system, defined in appendix B.

Functional content

Functional content is also a vector, but its definition is a little more involved. The idea is to

capture relationships with world states that contribute to the use of that signal in the same

situation. Components of the vector for signal s denote how much greater payoff is obtained

with a signal than without. We first need to know the payoffs that would occur in each state

if no signalling took place. Let ∗ denote the best strategy in the absence of signalling, so qr
i∗

denotes the receiver’s expected payoff in state i in the absence of signalling.1 Then we can

define each agent’s expected payoff in the absence of signalling as follows:

1Shea et al. (2017, p. 23) claim only pure strategies need be considered because “in the absence of signals,
the receiver can never do better by mixing than by pursuing some pure strategy.” This is true for standard
implementations of signalling models: a payoff of zero is neutral, rather than a penalty, and lineages cannot
go extinct. There are other ways of modelling evolutionary processes, however, in which payoffs denote the
number of offspring an agent will have (Donaldson-Matasci et al., 2010). In these models, agents might do
better with mixed rather than pure strategies (Kelly, 1956).
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qs ≡ Σi p(wi)qs
i∗

qr ≡ Σi p(wi)qr
i∗

Vector entries are determined by the extent to which payoffs given signals exceed these

baseline payoffs. For example, qr
ik − qr is the extent to which doing ak in state wi pays the

receiver more than doing the act determined by the default strategy.

For the receiver, the expected extra payoff from heeding signals about state wi is:

er
i︸︷︷︸

expected extra benefit
of heeding signals

about state wi

≡ Σk︸︷︷︸
sum over
all acts ak

p(ak|wi)︸     ︷︷     ︸
probability of
performing ak

given wi

. (qr
ik −qr)︸       ︷︷       ︸

extra benefit of a j
over default act

in state wi

The vector component denoting state wi for signal s is the expected extra benefit of heeding

signals about state wi multiplied by the probability of state wi given that signal s occurred:

xr
i︸︷︷︸

vector component
denoting state wi

for signal s

≡



p(wi|s)︸    ︷︷    ︸
probability of state wi
given signal s occurred

. er
i︸︷︷︸

expected extra benefit
of heeding signals

about state wi

if Σk p(ak|s)qr
ik > qr︸                 ︷︷                 ︸

heeding this signal
in this state is

beneficial on average

0 otherwise

Finally, Shea et al. (2017) normalise the vector so that it sums to 1:

σ = Σixr
i

Fr(s)≡ <
xr

1
σ
,

xr
2

σ
, ...

xr
i

σ
... >︸                      ︷︷                      ︸

functional content
of signal s

with respect to receiver

This procedure gives different functional contents for sender and receiver. In fact, Shea et al.
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(2017, Appendix) define functional content for both agents at once. This requires defining

dik, the minimum increase over baseline payoffs across both agents. Subsequent terms are

defined analogously:

dik ≡ min(qr
ik −qr, qs

ik −qs)

ei ≡ Σk p(ak|wi).dik

The vector component xi requires both conditions to be met:

xi ≡


p(wi|s).ei if Σk p(ak|s)qr

ik > qr︸                 ︷︷                 ︸
heeding this signal

in this state is
beneficial for receiver

and Σk p(ak|s)qs
ik > qs︸                 ︷︷                 ︸

heeding this signal
in this state is

beneficial for sender

0 otherwise

Finally, the vector is normalised and functional content is defined as usual:

σ ≡ Σixi

F(s)≡<
x1

σ
,

x2

σ
, ...

xi

σ
... >

Functional content captures world states that must obtain in order for receiver behaviour to

be successful in responding to a sign. A typical content vector looks like this:

< 0,0,1,0 >

The signal to which this content belongs is functionally associated with four world states.

The third state w3 is one for which, upon receipt of the signal, acting differently from the

default strategy brings greater-than-baseline payoffs.
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Grafen’s costly signalling model

NB: The variables in this appendix are taken from Grafen (1990), and therefore do not cor-

respond to variables in the rest of the thesis.

As in Grafen’s exposition, we will describe the senders as males and receivers as females.

The goal of each male is to improve its chances of mating. The goal of each female is to

distinguish high-quality from low-quality males – in other words, to accurately assess each

male’s quality.

The following variables are used (see also Grafen (1990, §2)):

• q: true quality of male

• a = A(q): level of advertising of male; a function of his true quality

• p = P(a) = P(A(q)): perceived quality of male; a function of his level of advertising

Given these definitions, we can say that a female perceives ‘correctly’ when p = q. We

now write two expressions to capture the fitness of males and females with respect to the

interaction mediated by a signal:

• Male fitness: w = w(a, p,q): a function of his level of advertising, actual quality and

perceived quality

• Female fitness: D(q, p): a function of the loss in fitness suffered by a female who

perceives a male of quality q as being of quality p. When p = q, the female has

perceived correctly, and D(q, p) = 0 so there is no fitness penalty.

336
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We need a few more definitions in hand before we can approach the proof:

• G(q): the cumulative frequency distribution of q among males

• D: Average fitness penalty to females

(Grafen doesn’t use the term D; I have introduced it for convenience.) We can calculate the

average fitness penalty D in terms of the frequency distribution of males G(q):

D =
∫

D[q,P(a)]dG(q)

Here D[q,P(a)] is the fitness penalty for a female meeting a male of quality q, where we

assume his level of advertising a depends on his quality q. We sum those penalties over all

the males in the population, as denoted by the integral sign
∫

and the term dG(q) (the d tells

us to sum over all the members of G(q) i.e. all the males).

In terms of evolutionary games, males play strategy a (advertising at a certain level, given

their quality) and females play strategy p (inferring the quality of a male, given their level

of advertising). For there to be an evolutionarily stable point in this game, there must be

a pair of strategies such that each is optimal given the other. Neither males nor females

can unilaterally diverge without incurring a fitness penalty. This situation is denoted by two

mathematical expressions. The first states that males cannot improve, the second that females

cannot improve:

w(A∗(q),P∗(A∗(q)),q)︸                        ︷︷                        ︸
Male fitness

of playing A∗

≥︸︷︷︸
is greater than

or equal to

w(a,P∗(a),q) for all a,q.︸                            ︷︷                            ︸
male fitness of

any other strategy

(D.1)

∫
D[q,P∗(A∗(q))]dG(q)︸                          ︷︷                          ︸

Female fitness penalty
of playing P∗

≤︸︷︷︸
is less than
or equal to

∫
D[q,P(A∗(q))]dG(q) for all P(a).︸                                         ︷︷                                         ︸

female fitness penalty
of any other strategy

(D.2)
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(These two inequalities are Grafen’s equation (1), page 519.) When these inequalities hold,

the pair of strategies A∗ and P∗ are evolutionarily stable.

Another bit of terminology is required:

• w1,w2,w3: partial derivatives of w(a, p,q) with respect to a, p and q respectively.

• w11,w12,w21 etc: higher order derivatives.

The statements to be proved

Grafen proves two statements, which we can think of as minor and major handicap results.

The first makes use of the notion of an evolutionarily stable strategy (ESS) (Maynard Smith

and Price, 1973).

Minor handicap result: “under weak conditions on the function w(a, p,q), an
ESS exists which exhibits the features Zahavi associated with the handicap prin-
ciple” (Grafen, 1990, p. 519)
Major handicap result: “one can conclude from the evolutionary stability of
signals that they are honest, costly and costly in a way that relates to the true
quality revealed” (Grafen, 1990, p. 521).

Minor result: proof

(See also Grafen (1990, §2.1).)

A few assumptions:

1. The set of points of increase of G is an interval (i.e. there are no gaps in the distribution

of quality).

2. w is continuous.

3. w1,w2,w3 exist.
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4. w1 is negative. This means that w goes down as a goes up, which embodies the as-

sumption that advertising is costly.

5. w2 is positive. This means that w goes up as p goes up, which embodies the assumption

that male fitness improves as female perception of their quality increases.

6. w1(a,p,q)
w2(a,p,q)

is strictly increasing in q. This means that better males do better by advertising

more. The condition is satisfied when w23 ≥ 0 and w13 > 0.

7. The ratio w1
w2

is defined. This is required for technical reasons.

8. The set of values of q for which G(q) is increasing is assumed to be an interval on the

real line, [qmin,qmax] where qmin is finite.

9. There is a finite minimum level of advertising, amin.

Now, functions P∗ and A∗ can be defined as follows:

P∗(amin) = qmin

P∗′(a) =−w1[a,P∗(a),P∗(a)]
w2[a,P∗(a),P∗(a)]

P∗[A∗(q)] = q

(D.3)

P∗ is monotone increasing because w1 and w2 are of opposite sign (by assumptions 4 and

5).

The marginal value of advertising, given females are adopting strategy P∗, is:

δ
δa

w[a,P∗(a),q]︸                ︷︷                ︸
Marginal value of advertising

= w1[a,P∗(a),q]︸             ︷︷             ︸
Advertising expenditure

+ P∗′(a)︸  ︷︷  ︸
female perception

given advertising level

w2[a,P∗(a),q]︸             ︷︷             ︸
fitness benefit

given female perception

When the marginal value of advertising is positive, males are incentivised to advertise

more. When it is negative, they are incentivised to advertise less. So a stable point will occur
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when the marginal value of advertising is zero. We can find the sign of the marginal value of

advertising – whether it is positive, negative or zero – by doing the following. We substitute

in the definition of P∗′ from equation D.3, and divide by w2[a,P∗(a),q], so the right hand

side becomes:

w1[a,P∗(a),q]
w2[a,P∗(a),q]︸             ︷︷             ︸
Left hand quotient

−w1[a,P∗(a),P∗(a)]
w2[a,P∗(a),P∗(a)]

The marginal value of advertising has the same sign as this term, because all we did was

divide by w2[a,P∗(a),q] which is positive (by assumption 5).

By assumption 6 (better males do better by advertising more), the left hand quotient is

increasing in q. Therefore, the marginal value of advertising is positive when q > P∗(a),

zero when q = P∗(a) and negative when q < P∗(a). In other words, males are incentivised to

advertise more when females perceive them as lower quality than they really are. Inversely,

they are incentivised to advertise less when females perceive them as higher quality than they

really are – because in order to achieve it they must expend more resources than a favourable

assessment can recoup.

Now, consider the relationship between P∗ and A∗ described in equation D.3. P∗(a) is an

increasing function with inverse A∗, since P∗[A∗(q)] = q). Therefore, the marginal value of

advertising is positive when a < A∗(q), zero when a = A∗(q) and negative when a > A∗(q).

In other words, males are incentivised to advertise more when they are not yet signalling

at the ‘standard level’ A∗. Inversely, they are incentivised to advertise less when they are

signalling above the level of A∗. As a result, A∗ is an ESS when all females employ the

strategy P∗.
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It remains only to show that P∗ is an ESS when all males employ the strategy A∗. Re-

call from equation D.2 that P∗ has to satisfy an inequality to be an ESS. Both sides of the

inequality can be no lower than zero, so the female strategy will satisfy the condition when

the left hand side of the inequality is zero. But we defined the female strategy such that

P∗(A∗(q)) = q, which entails that the left hand side of the inequality is always zero. There-

fore it achieves the minimum possible fitness penalty, and is an ESS.

Therefore, P∗ and A∗ are an evolutionarily stable pair of strategies.

Major result: proof

(See also Grafen (1990, §2.2).)

In formal terms, the statement to be proved is the following:

If A∗,P∗ is an ESS pair, w2 > 0 and A∗(q) is increasing, then

(a) P∗[A∗(q)] = q ∀q

(b) w1 < 0

(c)
w1(a, p,q)
w2(a, p,q)

is strictly increasing in q near the path [A∗(q),q,q]

Condition (a) corresponds to honesty of signals, condition (b) embodies the costliness of

signals, and condition (c) captures the idea that signals should be costlier for males of lower

quality. The proof proceeds in three parts.

(a). Since A(q) is increasing, there is an inverse function A−1 mapping each level of

advertising into the quality of the male producing it. Female fitness penalty is minimised

when P = A−1, so females will play this strategy. Therefore, P(A(q)) = A−1(A(q)) = q and

(a) holds. In other words, if signals were not reliable, females would not use them. (This
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result assumes a free choice of female strategy.)

(b). A(q) is the male strategy, and it is stable when it maximises male fitness w(a, p,q).

We saw that the following must be true when w is maximised:

w1 +P′w2 = 0 (D.4)

But we know that P′ is positive, because A′ is. w2 is positive by assumption, therefore w1

must be negative and (b) holds. In other words, if signalling is stable and honest, there must

be a reason why worse males do not signal at a higher level. This reason can only be cost.

(This result assumes a free choice of male strategy.)

(c). Equation D.4 entails that male fitness is at either a maximum or a minimum. For

it to be a maximum, as per the assumption that it is stable, (c) must hold. In other words,

each male’s level of advertising is stable (i.e. provides maximum fitness), yet better males

advertise more. Therefore the marginal cost of advertising must be lower for better males.
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de Polavieja’s costly signalling model

The following model is adapted from de Polavieja (2002). Some variable names have been

changed for consistency.

Basics. Let W = (w1,w2, ...wN) be states of the world, S = (s1,s2, ...sN) signals. For sim-

plicity, assume there are the same number of signals as states, and the receiver must infer the

state from the signal.1

Error. Let E be a matrix such that ei j = p(wi|s j), the conditional probability that wi is the

state when signal s j was sent. Call this the error matrix. When there are no errors, every

entry except the diagonal is zero (it is a diagonal matrix). When there are errors, the matrix

is not diagonal: some states prompt signals that do not correspond to them. Conversely, let

F be a matrix such that f ji = p(s j|wi), the conditional probability that s j is emitted when wi

is the state.

Cost. Let ci j be the cost of producing signal s j in state wi. The average cost of signal s j is

c j = Σiei jci j. The average cost across all signals is c = Σ j p(s j)c j. Index the signals in order

of increasing cost, so c1 ≤ c2 ≤ ...≤ cN .

Information. Mutual information between states W and signals S is:

I(W ;S) = Σi, j p(wi,s j) log
p(wi,s j)

p(wi)p(s j)

1Two things I haven’t been able to confirm: whether states are equiprobable, and whether there could be a
different number of signals than states. I believe the answer to be yes to both.
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Now, the entropy of signals H(S) is defined as

H(S) = Σ j p(s j) log
1

p(s j)

And if we define signal uncertainty u j for signal s j as

u j = Σiei j log
1
f ji

(E.1)

then the noise entropy (conditional entropy of signals given states) H(S|W ) is

H(S|W ) = Σ j p(s j)u j

Putting together these equations, we can express mutual information between signals and

states in terms of the signal variability and error constraint:

I(W ;S) = H(S)−H(S|W )

= Σ j p(s j) log
1

p(s j)︸                 ︷︷                 ︸
signal variability

− Σ j p(s j)u j︸        ︷︷        ︸
error constraint

What is going on here? Usually when considering the mutual information between two

things when one is downstream of the other, we take the upstream one as the main variable.

H(W )−H(W |S) means something like ‘what it’s possible to learn about w, minus what you

still don’t know after observing s’. Unusually, here the equation is the other way round. It

still equals the same value, but the natural interpretation is slightly different. H(S)−H(S|W )

means something like ‘what it’s possible to learn from s, minus what it refuses to tell you’.

In the present model, we are interpreting ‘refuses to tell you’ as ‘cannot tell you, due to
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inherent error’. As such, we defined H(S|W ) solely in terms of the error matrix E. There

was an f ji term in equation E.1, but that can be rewritten in terms of ei j by Bayes’ theorem:

f ji =
p(s j)ei j

Σk p(sk)eik

The problem to be solved. We have a definition of transmission rate and a term that repre-

sents the average cost of a signal. We want to maximise transmission rate I(W ;S) while not

exceeding a certain average cost cmax. This can be done by altering the frequency with which

signals are used – that is, altering the probability distribution over signals, P(S). Notice an

important difference with the way signalling games are traditionally represented: usually

the sender strategy matrix P(S|W ) determines the conditional probabilities of signals given

states and is interpreted as the sender’s choice; here the converse error matrix F determines

the conditional probabilities of signals given states and is interpreted as a consequence of

noise. The sender’s assignment of meanings to signals is determined by the choice of signal

frequencies P(S).

This seems like a problem that evolution by natural selection might plausibly be inter-

preted as solving. de Polavieja’s example is neural signalling. Neurons need to communi-

cate, but it costs them energy to do so. Selection produces signalling strategies that must

trade off metabolic cost for accuracy. What would the best strategy be?

The solution. Here’s where things get a bit involved. When maximising a function sub-

ject to constraints, we use Lagrange multipliers (Jensen, 2006). A variation on the Blahut-

Arimoto algorithm (Arimoto, 1972; Blahut, 1972) allows us to calculate the maximum value

of I(W ;S) such that c ≤ cmax. The algorithm runs as follows.

Step 1. Pick a random starting vector p̂(S).
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Step 2. Using p̂(S), calculate the conditional matrix f ji:

f ji =
p(s j)ei j

Σk p(sk)eik
(E.2)

Step 3. Use the conditional matrix to calculate the cost constraint β from the equation:2

cmax =
Σ jc j exp−

(
βc j −Σke jk log f jk

)
Σ j exp−

(
βc j −Σke jk log f jk

) (E.3)

Step 4. Use β to calculate the new vector p̂(S):

p̂(S) =
exp−

(
βc j −Σkek j log f jk

)
Σi exp−(βci −Σkeki log fik)

(E.4)

Step 5. Repeat steps 2-4 (equations E.2, E.3 and E.4, in order) until p̂(S) no longer

changes. The value to which p̂(S) converges is the optimal usage of signals.

Example. Consider a system with three signals such that the first two cost the same, c1 = c2,

but the third costs more, c3 > c1. Suppose the error matrix is:

E = p(wi|s j) =


1−ρ ρ 0

ρ 1−ρ 0

0 0 1


The noise entropy is:

H(S|W ) = (p(s1)+ p(s2))H2(ρ) (E.5)

Where H2(ρ) is the binary entropy function ρ log 1
ρ +(1−ρ) log 1

1−ρ .

2It is not clear to me how to calculate β , because it is not easy to rearrange this equation in order to isolate
β on one side. But as it is a necessary part of the algorithm, I include it here for completeness.
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The algorithm delivers the following probabilities for signals (de Polavieja, 2002, p. 663):

p(s1) = p(s2) =
exp(−βc1 −H2(ρ))

Z
(E.6)

p(s3) =
exp(−βc3)

Z
(E.7)

Where Z is a normalisation constant required to ensure p(s1)+ p(s2)+ p(s3) = 1:

Z = 2exp(−βc1 −H2(ρ))+ exp(−βc3)

And β is determined by taking the average energy to be the allowed maximum, in other

words substituting equations E.6 and E.7 into equation E.8 and solving for β :

cmax = 2p(s1)c1 + p(s3)c3 (E.8)

The equations are tricky, but inspecting E.6 and E.7 reveals an intuitive result. Signals s1

and s2 are at risk of being conflated, and so their use is penalised by H2(ρ): the frequency

with which they ought to be used is inversely proportional to the extent they are liable to

be mistaken for each other. Signal s3 cannot be confused with any other, so the only thing

that penalises its use is the cost c3. Despite the lower cost c1 = c2 of the cheaper signals,

the need to reliably distinguish states might lead to s3 being used more; it depends on the

relative sizes of βc3 and βc1 +H2(ρ).
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